EU-kalat: Difference between revisions
Line 454: | Line 454: | ||
==== Initiate conc_pcddf for PFAS disease burden study ==== | ==== Initiate conc_pcddf for PFAS disease burden study ==== | ||
Bayesian approach for PCDDF, PCB, OT, PFAS. | |||
* Model run 2021-02-07 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=Yllb2MifHlJzu8sL] | |||
<rcode name="pollutant_bayes" label="Initiate conc_pcddf with PFAS, OT (for developers only)" embed=0> | |||
# This is code Op_en3104/pollutant_bayes on page [[EU-kalat]] | |||
library(OpasnetUtils) | |||
library(reshape2) | |||
library(rjags) # JAGS | |||
library(ggplot2) | |||
library(MASS) # mvrnorm | |||
library(car) # scatterplotMatrix | |||
#size <- Ovariable("size", ddata="Op_en7748", subset="Size distribution of fish species") | |||
#time <- Ovariable("time", data = data.frame(Result=2015)) | |||
#conc_pcddf <- EvalOutput(conc_pcddf,verbose=TRUE) | |||
#View(conc_pcddf@output) | |||
objects.latest("Op_en3104", code_name = "preprocess") # [[EU-kalat]] eu, eu2, euRatio, indices | |||
eu2 <- EvalOutput(eu2) | |||
# Hierarchical Bayes model. | |||
# PCDD/F concentrations in fish. | |||
# It uses the TEQ sum of PCDD/F (PCDDF) as the total concentration | |||
# of dioxin and PCB respectively for PCB in fish. | |||
# PCDDF depends on size of fish, fish species, catchment time, and catchment area, | |||
# but we omit catchment area. In addition, we assume that size of fish has | |||
# zero effect for other fish than Baltic herring. | |||
# Catchment year affects all species similarly. | |||
eu3 <- eu2[eu2$Compound %in% conl & eu2$Fish %in% fisl & eu2$Matrix == "Muscle" , ]@output | |||
eu3 <- reshape( | |||
eu3, | |||
v.names = "eu2Result", | |||
idvar = c("THLcode", "Fish"), | |||
timevar = "Compound", | |||
drop = c("Matrix","eu2Source"), | |||
direction = "wide" | |||
) | |||
colnames(eu3) <- gsub("eu2Result\\.","",colnames(eu3)) | |||
oprint(head(eu3)) | |||
#> colnames(eu3) | |||
#[1] "THLcode" "Fish" "N" "Length" "Year" | |||
#[6] "euResult.PCDDF" "euResult.PCB" | |||
eu3$MPhT <- NULL # No values > 0 | |||
eu3$DOT <- NULL # No values > 0 | |||
eu3$BDE138 <- NULL # No values > 0 | |||
conl <- as.character(colnames(eu3)[-(1:5)]) # indices$Compound.TEQ2 | |||
fisl <- as.character(unique(eu3$Fish)) # c("Baltic herring","Salmon") | |||
C <- length(conl) | |||
Fi <- length(fisl) | |||
N <- 1000 | |||
conl | |||
fisl | |||
conc <- eu3[6:ncol(eu3)] | |||
# Find the level of quantification for dinterval function | |||
LOQ <- unlist(lapply(eu3[6:ncol(eu3)], FUN = function(x) min(x[x!=0], na.rm=TRUE))) | |||
# With TEQ, there are no zeros. So this is useful only if there are congener-specific results. | |||
#names(LOQ) <- conl | |||
conc <- sapply( | |||
1:length(LOQ), | |||
FUN = function(x) ifelse(is.na(conc[,x]) | conc[,x]==0, 0.5*LOQ[x], conc[,x]) | |||
) | |||
conc <- data.matrix(conc) | |||
# It assumes that all fish groups have the same Omega but mu varies. | |||
mod <- textConnection( | |||
" | |||
model{ | |||
for(i in 1:S) { # S = fish sample | |||
# below.LOQ[i,j] ~ dinterval(-conc[i,j], -LOQ[j]) | |||
conc[i,1:C] ~ dmnorm(muind[i,], Omega[fis[i],,]) | |||
muind[i,1:C] <- mu[fis[i],1:C] #+ lenp[fis[i]]*length[i] + timep*year[i] | |||
} | |||
# Priors for parameters | |||
# Time trend. Assumed a known constant because at the moment there is little time variation in data. | |||
# https://www.evira.fi/elintarvikkeet/ajankohtaista/2018/itameren-silakoissa-yha-vahemman-ymparistomyrkkyja---paastojen-rajoitukset-vaikuttavat/ | |||
# PCDDF/PCB-concentations 2001: 9 pg/g fw, 2016: 3.5 pg/g fw. (3.5/9)^(1/15)-1=-0.06102282 | |||
# timep ~ dnorm(-0.0610, 10000) | |||
# lenp[1] ~ dnorm(0.01,0.01) # length parameter for herring | |||
# lenp[2] ~ dnorm(0,10000) # length parameter for salmon: assumed zero | |||
for(i in 1:Fi) { # Fi = fish species | |||
Omega[i,1:C,1:C] ~ dwish(Omega0[1:C,1:C],S) | |||
pred[i,1:C] ~ dmnorm(mu[i,1:C], Omega[i,,]) #+lenp[i]*lenpred+timep*timepred, Omega[i,,]) # Model prediction. | |||
for(j in 1:C) { | |||
mu[i,j] ~ dnorm(0, 0.0001) # mu1[j], tau1[j]) # Congener-specific mean for fishes | |||
} | |||
} | |||
} | |||
") | |||
jags <- jags.model( | |||
mod, | |||
data = list( | |||
S = nrow(eu3), | |||
C = C, | |||
Fi = Fi, | |||
conc = log(conc), | |||
# length = eu3$Length-170, # Subtract average herring size | |||
# year = eu3$Year-2009, # Substract baseline year | |||
fis = match(eu3$Fish, fisl), | |||
# lenpred = 233-170, | |||
# timepred = 2009-2009, | |||
Omega0 = diag(C)/100000 | |||
), | |||
n.chains = 4, | |||
n.adapt = 100 | |||
) | |||
update(jags, 1000) | |||
samps.j <- jags.samples( | |||
jags, | |||
c( | |||
'mu', # mean by fish and compound | |||
'Omega', # precision matrix by compound | |||
# 'lenp',# parameters for length | |||
# 'timep', # parameter for Year | |||
'pred' # predicted concentration for year 2009 and length 17 cm | |||
), | |||
# thin=1000, | |||
N | |||
) | |||
dimnames(samps.j$Omega) <- list(Fish = fisl, Compound = conl, Compound2 = conl, Iter=1:N, Chain=1:4) | |||
dimnames(samps.j$mu) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4) | |||
#dimnames(samps.j$lenp) <- list(Fish = fisl, Iter = 1:N, Chain = 1:4) | |||
dimnames(samps.j$pred) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4) | |||
#dimnames(samps.j$timep) <- list(Dummy = "time", Iter = 1:N, Chain = 1:4) | |||
##### conc.param contains expected values of the distribution parameters from the model | |||
conc.param <- Ovariable( | |||
"conc.param", | |||
dependencies = data.frame(Name = "samps.j", Ident=NA), | |||
formula = function(...) { | |||
conc.param <- list( | |||
Omega = apply(samps.j$Omega, MARGIN = 1:3, FUN = mean), | |||
# lenp = cbind( | |||
# mean = apply(samps.j$lenp, MARGIN = 1, FUN = mean), | |||
# sd = apply(samps.j$lenp, MARGIN = 1, FUN = sd) | |||
# ), | |||
mu = apply(samps.j$mu, MARGIN = 1:2, FUN = mean)#, | |||
# timep = cbind( | |||
# mean = apply(samps.j$timep, MARGIN = 1, FUN = mean), | |||
# sd = apply(samps.j$timep, MARGIN = 1, FUN = sd) | |||
# ) | |||
) | |||
# names(dimnames(conc.param$lenp)) <- c("Fish","Metaparam") | |||
# names(dimnames(conc.param$timep)) <- c("Dummy","Metaparam") | |||
conc.param <- melt(conc.param) | |||
colnames(conc.param)[colnames(conc.param)=="value"] <- "Result" | |||
colnames(conc.param)[colnames(conc.param)=="L1"] <- "Parameter" | |||
conc.param$Dummy <- NULL | |||
# conc.param$Metaparam <- ifelse(is.na(conc.param$Metaparam), conc.param$Parameter, as.character(conc.param$Metaparam)) | |||
return(Ovariable(output=conc.param, marginal=colnames(conc.param)!="Result")) | |||
} | |||
) | |||
objects.store(conc.param, samps.j) | |||
cat("Lists conc.params and samps.j stored.\n") | |||
######################3 | |||
cat("Descriptive statistics:\n") | |||
# Leave only the main fish species and congeners and remove others | |||
#oprint(summary( | |||
# eu2[eu2$Compound %in% indices$Compound.PCDDF14 & eu$Fish %in% fisl , ], | |||
# marginals = c("Fish", "Compound"), # Matrix is always 'Muscle' | |||
# function_names = c("mean", "sd") | |||
#)) | |||
tmp <- eu2[eu2$Compound %in% c("PCDDF","PCB","BDE153","PBB153","PFOA","PFOS","DBT","MBT","TBT"),]@output | |||
ggplot(tmp, aes(x = eu2Result, colour=Fish))+stat_ecdf()+ | |||
facet_wrap( ~ Compound, scales="free_x")+scale_x_log10() | |||
conc.param <- EvalOutput(conc.param) | |||
if(FALSE) { | |||
scatterplotMatrix(t(exp(samps.j$pred[1,,,1])), main = "Predictions for all compounds for Baltic herring") | |||
scatterplotMatrix(t(exp(samps.j$pred[,1,,1])), main = "Predictions for all fish species for PCDDF") | |||
scatterplotMatrix(t(samps.j$Omega[,1,1,,1])) | |||
#scatterplotMatrix(t(cbind(samps.j$Omega[1,1,1,,1],samps.j$mu[1,1,,1]))) | |||
plot(coda.samples(jags, 'Omega', N)) | |||
plot(coda.samples(jags, 'mu', N)) | |||
plot(coda.samples(jags, 'lenp', N)) | |||
plot(coda.samples(jags, 'timep', N)) | |||
plot(coda.samples(jags, 'pred', N)) | |||
} | |||
</rcode> | |||
NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created. | NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created. |
Revision as of 14:56, 7 March 2021
This page is a study.
The page identifier is Op_en3104 |
---|
Moderator:Arja (see all) |
|
Upload data
|
EU-kalat is a study, where concentrations of PCDD/Fs, PCBs, PBDEs and heavy metals have been measured from fish
Question
The scope of EU-kalat study was to measure concentrations of persistent organic pollutants (POPs) including dioxin (PCDD/F), PCB and BDE in fish from Baltic sea and Finnish inland lakes and rivers. [1] [2] [3].
Answer

The original sample results can be acquired from Opasnet base. The study showed that levels of PCDD/Fs and PCBs depends especially on the fish species. Highest levels were on salmon and large sized herring. Levels of PCDD/Fs exceeded maximum level of 4 pg TEQ/g fw multiple times. Levels of PCDD/Fs were correlated positively with age of the fish.
Mean congener concentrations as WHO2005-TEQ in Baltic herring can be printed out with this link or by running the codel below.
Rationale
Data
Data was collected between 2009-2010. The study contains years, tissue type, fish species, and fat content for each concentration measurement. Number of observations is 285.
There is a new study EU-kalat 3, which will produce results in 2016.
Calculations
Preprocess
- Preprocess model 22.2.2017 [4]
- Objects used in Benefit-risk assessment of Baltic herring and salmon intake
- Model run 25.1.2017 [5]
- Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [6]
- Model run 23.5.2017 with adjusted ovariables euRaw, eu, euRatio [7]
- Model run 11.10.2017: Small herring and Large herring added as new species [8]
- Model rerun 15.11.2017 because the previous stored run was lost in update [9]
- Model run 21.3.2018: Small and large herring replaced by actual fish length [10]
- Model run 26.3.2018 eu2 moved here [11]
See an updated version of preprocess code for eu on Health effects of Baltic herring and salmon: a benefit-risk assessment#Code for estimating TEQ from chinese PCB7
Bayes model for dioxin concentrations
- Model run 28.2.2017 [12]
- Model run 28.2.2017 with corrected survey model [13]
- Model run 28.2.2017 with Mu estimates [14]
- Model run 1.3.2017 [15]
- Model run 23.4.2017 [16] produces list conc.param and ovariable concentration
- Model run 24.4.2017 [17]
- Model run 19.5.2017 without ovariable concentration [18] ⇤--#: . The model does not mix well, so the results should not be used for final results. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: attack)
- Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [19]
- Model run 23.5.2017 debugged [20] [21] [22]
- Model run 24.5.2017 TEQdx, TECpcb -> PCDDF, PCB [23]
- Model run 11.10.2017 with small and large herring [24] (removed in update)
- Model run 12.3.2018: bugs fixed with data used in Bayes. In addition, redundant fish species removed and Omega assumed to be the same for herring and salmon. [25]
- Model run 22.3.2018 [26] Model does not mix well. Thinning gives little help?
- Model run 25.3.2018 with conc.param as ovariable [27]
Initiate conc_pcddf for PFAS disease burden study
Bayesian approach for PCDDF, PCB, OT, PFAS.
- Model run 2021-02-07 [28]
NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created.
Initiate conc_pcddf for Goherr
- Model run 19.5.2017 [29]
- Model run 23.5.2017 with bugs fixed [30]
- Model run 12.10.2017: TEQ calculation added [31]
- Model rerun 15.11.2017 because the previous stored run was lost in update [32]
- 12.3.2018 adjusted to match the same Omega for all fish species [33]
- 26.3.2018 includes length and time as parameters, lengt ovariable initiated here [34]
⇤--#: . These codes should be coherent with POPs in Baltic herring. --Jouni (talk) 12:14, 7 June 2017 (UTC) (type: truth; paradigms: science: attack)
See also
References
- ↑ A. Hallikainen, H. Kiviranta, P. Isosaari, T. Vartiainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan dioksiinien, furaanien, dioksiinien kaltaisten PCB-yhdisteiden ja polybromattujen difenyylieettereiden pitoisuudet. Elintarvikeviraston julkaisuja 1/2004. [1]
- ↑ E-R.Venäläinen, A. Hallikainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan raskasmetallipitoisuudet. Elintarvikeviraston julkaisuja 3/2004. [2]
- ↑ Anja Hallikainen, Riikka Airaksinen, Panu Rantakokko, Jani Koponen, Jaakko Mannio, Pekka J. Vuorinen, Timo Jääskeläinen, Hannu Kiviranta. Itämeren kalan ja muun kotimaisen kalan ympäristömyrkyt: PCDD/F-, PCB-, PBDE-, PFC- ja OT-yhdisteet. Eviran tutkimuksia 2/2011. ISSN 1797-2981 ISBN 978-952-225-083-4 [3]