EU-kalat: Difference between revisions

From Opasnet
Jump to navigation Jump to search
Line 88: Line 88:
     temp <- oapply(eu * TEF, cols = "Compound", FUN = "sum")
     temp <- oapply(eu * TEF, cols = "Compound", FUN = "sum")
     colnames(temp@output)[colnames(temp@output)=="Group"] <- "Compound"
     colnames(temp@output)[colnames(temp@output)=="Group"] <- "Compound"
     eu2 <- combine(eu, temp)
     eu <- combine(eu, temp)
 
    eu$Compound <- factor( # Compound levels are ordered based on the data table on [[TEF]]
      eu$Compound,
      levels = unique(c(levels(TEF$Compound), levels(eu$Compound)))
    )
    eu$Compound <- eu$Compound[,drop=TRUE]
      
      
     return(eu2)
     return(eu)
   }
   }
)
)
Line 164: Line 170:
::{{comment|# |Maybe we should just estimate TEQs until the problem is fixed.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 19:37, 19 May 2017 (UTC)}}
::{{comment|# |Maybe we should just estimate TEQs until the problem is fixed.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 19:37, 19 May 2017 (UTC)}}
* Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=2vTgALXXTzLgd4l1]
* Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=2vTgALXXTzLgd4l1]
* Model run 23.5.2017 debugged [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=rMSAZy6PSKzKhHwp] [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=1P7ZPBbghEfisEcH]
* Model run 23.5.2017 debugged [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=rMSAZy6PSKzKhHwp] [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=1P7ZPBbghEfisEcH] [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=BcZDhfjpv3fa4IRU]


<rcode name="bayes" label="Sample Bayes model (for developers only)" graphics=1>
<rcode name="bayes" label="Sample Bayes model (for developers only)" graphics=1>
Line 279: Line 285:
     'Omega', # precision matrix by fish and compound
     'Omega', # precision matrix by fish and compound
     'pred', # predicted concentration by fish and compound
     'pred', # predicted concentration by fish and compound
#    'mu1', # mean prior for mu by compound
    #    'mu1', # mean prior for mu by compound
     'Omega1', # precision matrix by compound
     'Omega1', # precision matrix by compound
#    'tau1', # precision for prior of all mu  
    #    'tau1', # precision for prior of all mu  
     'pred1' # predicted concentration by compound
     'pred1' # predicted concentration by compound
   ),  
   ),  
Line 300: Line 306:
   pred.mean = apply(samps.j$pred[,,,1], MARGIN = 1:2, FUN = mean),
   pred.mean = apply(samps.j$pred[,,,1], MARGIN = 1:2, FUN = mean),
   pred.sd = apply(samps.j$pred[,,,1], MARGIN = 1:2, FUN = sd),
   pred.sd = apply(samps.j$pred[,,,1], MARGIN = 1:2, FUN = sd),
#  mu1 = apply(samps.j$mu1[,,1], MARGIN = 1, FUN = mean),
  #  mu1 = apply(samps.j$mu1[,,1], MARGIN = 1, FUN = mean),
#  tau1 = apply(samps.j$tau1[,,1], MARGIN = 1, FUN = mean),
  #  tau1 = apply(samps.j$tau1[,,1], MARGIN = 1, FUN = mean),
   pred1.mean = apply(samps.j$pred1[,,1], MARGIN = 1, FUN = mean),
   pred1.mean = apply(samps.j$pred1[,,1], MARGIN = 1, FUN = mean),
   pred1.sd = apply(samps.j$pred1[,,1], MARGIN = 1, FUN = sd)
   pred1.sd = apply(samps.j$pred1[,,1], MARGIN = 1, FUN = sd)
Line 317: Line 323:
conl <- indices$Compound.PCDDF14
conl <- indices$Compound.PCDDF14
eu <- eu[eu$Compound %in% conl & eu$Fish %in% fisl , ]  
eu <- eu[eu$Compound %in% conl & eu$Fish %in% fisl , ]  
oprint(summary(
  eu,
  marginals = c("Fish", "Compound"), # Matrix is always 'Muscle'
  function_names = c("mean", "sd")
))


euRatio <- EvalOutput(euRatio)
euRatio <- EvalOutput(euRatio)
oprint(summary(
  euRatio,
  marginals = c("Fish", "Compound"), # Matrix is always 'Muscle'
  function_names = c("mean", "sd")
))


ggplot(eu@output, aes(x = euResult, colour=Compound))+geom_density()+
ggplot(eu@output, aes(x = euResult, colour=Compound))+geom_density()+
Line 324: Line 342:
#stat_ellipse()
#stat_ellipse()


ggplot(euRatio@output, aes(x = euRatioResult, colour = Fish))+geom_density()+
ggplot(euRatio@output, aes(x = euRatioResult, colour = Compound))+geom_density()+
   facet_wrap(~ Compound, scales = "free_y")
   facet_wrap(~ Fish, scales = "free_y")


ggplot(melt(exp(samps.j$pred[,,,1])), aes(x=value, colour=Compound))+geom_density()+
ggplot(melt(exp(samps.j$pred[,,,1])), aes(x=value, colour=Compound))+geom_density()+
Line 346: Line 364:
)
)


#plot(coda.j)
plot(coda.j)
</rcode>
</rcode>



Revision as of 18:50, 23 May 2017


EU-kalat is a study, where concentrations of PCDD/Fs, PCBs, PBDEs and heavy metals have been measured from fish

Question

The scope of EU-kalat study was to measure concentrations of persistent organic pollutants (POPs) including dioxin (PCDD/F), PCB and BDE in fish from Baltic sea and Finnish inland lakes and rivers. [1] [2] [3].

Answer

The original sample results can be acquired from Opasnet base. The study showed that levels of PCDD/Fs and PCBs depends especially on the fish species. Highest levels were on salmon and large sized herring. Levels of PCDD/Fs exceeded maximum level of 4 pg TEQ/g fw multiple times. Levels of PCDD/Fs were correlated positively with age of the fish.

Mean congener concentrations as WHO2005-TEQ in Baltic herring can be printed out with the Run code below.

+ Show code

Rationale

Data

Data was collected between 2009-2010. The study contains years, tissue type, fish species, and fat content for each concentration measurement. Number of observations is 285.

There is a new study EU-kalat 3, which will produce results in 2016.

Calculations

+ Show code

Bayes model for dioxin concentrations

  • Model run 28.2.2017 [8]
  • Model run 28.2.2017 with corrected survey model [9]
  • Model run 28.2.2017 with Mu estimates [10]
  • Model run 1.3.2017 [11]
  • Model run 23.4.2017 [12] produces list conc.param and ovariable concentration
  • Model run 24.4.2017 [13]
  • Model run 19.5.2017 without ovariable concentration [14] ⇤--#: . The model does not mix well, so the results should not be used for final results. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: attack)
----#: . Maybe we should just estimate TEQs until the problem is fixed. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: comment)
  • Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [15]
  • Model run 23.5.2017 debugged [16] [17] [18]

+ Show code

Initiate concentration

  • Model run 19.5.2017 [19]

+ Show code

See also

References

  1. A. Hallikainen, H. Kiviranta, P. Isosaari, T. Vartiainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan dioksiinien, furaanien, dioksiinien kaltaisten PCB-yhdisteiden ja polybromattujen difenyylieettereiden pitoisuudet. Elintarvikeviraston julkaisuja 1/2004. [1]
  2. E-R.Venäläinen, A. Hallikainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan raskasmetallipitoisuudet. Elintarvikeviraston julkaisuja 3/2004. [2]
  3. Anja Hallikainen, Riikka Airaksinen, Panu Rantakokko, Jani Koponen, Jaakko Mannio, Pekka J. Vuorinen, Timo Jääskeläinen, Hannu Kiviranta. Itämeren kalan ja muun kotimaisen kalan ympäristömyrkyt: PCDD/F-, PCB-, PBDE-, PFC- ja OT-yhdisteet. Eviran tutkimuksia 2/2011. ISSN 1797-2981 ISBN 978-952-225-083-4 [3]