EU-kalat: Difference between revisions
Line 88: | Line 88: | ||
temp <- oapply(eu * TEF, cols = "Compound", FUN = "sum") | temp <- oapply(eu * TEF, cols = "Compound", FUN = "sum") | ||
colnames(temp@output)[colnames(temp@output)=="Group"] <- "Compound" | colnames(temp@output)[colnames(temp@output)=="Group"] <- "Compound" | ||
eu <- combine(eu, temp) | |||
eu$Compound <- factor( # Compound levels are ordered based on the data table on [[TEF]] | |||
eu$Compound, | |||
levels = unique(c(levels(TEF$Compound), levels(eu$Compound))) | |||
) | |||
eu$Compound <- eu$Compound[,drop=TRUE] | |||
return( | return(eu) | ||
} | } | ||
) | ) | ||
Line 164: | Line 170: | ||
::{{comment|# |Maybe we should just estimate TEQs until the problem is fixed.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 19:37, 19 May 2017 (UTC)}} | ::{{comment|# |Maybe we should just estimate TEQs until the problem is fixed.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 19:37, 19 May 2017 (UTC)}} | ||
* Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=2vTgALXXTzLgd4l1] | * Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=2vTgALXXTzLgd4l1] | ||
* Model run 23.5.2017 debugged [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=rMSAZy6PSKzKhHwp] [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=1P7ZPBbghEfisEcH] | * Model run 23.5.2017 debugged [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=rMSAZy6PSKzKhHwp] [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=1P7ZPBbghEfisEcH] [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=BcZDhfjpv3fa4IRU] | ||
<rcode name="bayes" label="Sample Bayes model (for developers only)" graphics=1> | <rcode name="bayes" label="Sample Bayes model (for developers only)" graphics=1> | ||
Line 279: | Line 285: | ||
'Omega', # precision matrix by fish and compound | 'Omega', # precision matrix by fish and compound | ||
'pred', # predicted concentration by fish and compound | 'pred', # predicted concentration by fish and compound | ||
# 'mu1', # mean prior for mu by compound | # 'mu1', # mean prior for mu by compound | ||
'Omega1', # precision matrix by compound | 'Omega1', # precision matrix by compound | ||
# 'tau1', # precision for prior of all mu | # 'tau1', # precision for prior of all mu | ||
'pred1' # predicted concentration by compound | 'pred1' # predicted concentration by compound | ||
), | ), | ||
Line 300: | Line 306: | ||
pred.mean = apply(samps.j$pred[,,,1], MARGIN = 1:2, FUN = mean), | pred.mean = apply(samps.j$pred[,,,1], MARGIN = 1:2, FUN = mean), | ||
pred.sd = apply(samps.j$pred[,,,1], MARGIN = 1:2, FUN = sd), | pred.sd = apply(samps.j$pred[,,,1], MARGIN = 1:2, FUN = sd), | ||
# mu1 = apply(samps.j$mu1[,,1], MARGIN = 1, FUN = mean), | # mu1 = apply(samps.j$mu1[,,1], MARGIN = 1, FUN = mean), | ||
# tau1 = apply(samps.j$tau1[,,1], MARGIN = 1, FUN = mean), | # tau1 = apply(samps.j$tau1[,,1], MARGIN = 1, FUN = mean), | ||
pred1.mean = apply(samps.j$pred1[,,1], MARGIN = 1, FUN = mean), | pred1.mean = apply(samps.j$pred1[,,1], MARGIN = 1, FUN = mean), | ||
pred1.sd = apply(samps.j$pred1[,,1], MARGIN = 1, FUN = sd) | pred1.sd = apply(samps.j$pred1[,,1], MARGIN = 1, FUN = sd) | ||
Line 317: | Line 323: | ||
conl <- indices$Compound.PCDDF14 | conl <- indices$Compound.PCDDF14 | ||
eu <- eu[eu$Compound %in% conl & eu$Fish %in% fisl , ] | eu <- eu[eu$Compound %in% conl & eu$Fish %in% fisl , ] | ||
oprint(summary( | |||
eu, | |||
marginals = c("Fish", "Compound"), # Matrix is always 'Muscle' | |||
function_names = c("mean", "sd") | |||
)) | |||
euRatio <- EvalOutput(euRatio) | euRatio <- EvalOutput(euRatio) | ||
oprint(summary( | |||
euRatio, | |||
marginals = c("Fish", "Compound"), # Matrix is always 'Muscle' | |||
function_names = c("mean", "sd") | |||
)) | |||
ggplot(eu@output, aes(x = euResult, colour=Compound))+geom_density()+ | ggplot(eu@output, aes(x = euResult, colour=Compound))+geom_density()+ | ||
Line 324: | Line 342: | ||
#stat_ellipse() | #stat_ellipse() | ||
ggplot(euRatio@output, aes(x = euRatioResult, colour = | ggplot(euRatio@output, aes(x = euRatioResult, colour = Compound))+geom_density()+ | ||
facet_wrap(~ | facet_wrap(~ Fish, scales = "free_y") | ||
ggplot(melt(exp(samps.j$pred[,,,1])), aes(x=value, colour=Compound))+geom_density()+ | ggplot(melt(exp(samps.j$pred[,,,1])), aes(x=value, colour=Compound))+geom_density()+ | ||
Line 346: | Line 364: | ||
) | ) | ||
plot(coda.j) | |||
</rcode> | </rcode> | ||
Revision as of 18:50, 23 May 2017
This page is a study.
The page identifier is Op_en3104 |
---|
Moderator:Arja (see all) |
|
Upload data
|
EU-kalat is a study, where concentrations of PCDD/Fs, PCBs, PBDEs and heavy metals have been measured from fish
Question
The scope of EU-kalat study was to measure concentrations of persistent organic pollutants (POPs) including dioxin (PCDD/F), PCB and BDE in fish from Baltic sea and Finnish inland lakes and rivers. [1] [2] [3].
Answer
The original sample results can be acquired from Opasnet base. The study showed that levels of PCDD/Fs and PCBs depends especially on the fish species. Highest levels were on salmon and large sized herring. Levels of PCDD/Fs exceeded maximum level of 4 pg TEQ/g fw multiple times. Levels of PCDD/Fs were correlated positively with age of the fish.
Mean congener concentrations as WHO2005-TEQ in Baltic herring can be printed out with the Run code below.
Rationale
Data
Data was collected between 2009-2010. The study contains years, tissue type, fish species, and fat content for each concentration measurement. Number of observations is 285.
There is a new study EU-kalat 3, which will produce results in 2016.
Calculations
- Preprocess model 22.2.2017 [4]
- Objects used in Benefit-risk assessment of Baltic herring and salmon intake
- Model run 25.1.2017 [5]
- Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [6]
- Model run 23.5.2017 with adjusted ovariables euRaw, eu, euRatio [7]
Bayes model for dioxin concentrations
- Model run 28.2.2017 [8]
- Model run 28.2.2017 with corrected survey model [9]
- Model run 28.2.2017 with Mu estimates [10]
- Model run 1.3.2017 [11]
- Model run 23.4.2017 [12] produces list conc.param and ovariable concentration
- Model run 24.4.2017 [13]
- Model run 19.5.2017 without ovariable concentration [14] ⇤--#: . The model does not mix well, so the results should not be used for final results. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: attack)
- Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [15]
- Model run 23.5.2017 debugged [16] [17] [18]
Initiate concentration
- Model run 19.5.2017 [19]
See also
References
- ↑ A. Hallikainen, H. Kiviranta, P. Isosaari, T. Vartiainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan dioksiinien, furaanien, dioksiinien kaltaisten PCB-yhdisteiden ja polybromattujen difenyylieettereiden pitoisuudet. Elintarvikeviraston julkaisuja 1/2004. [1]
- ↑ E-R.Venäläinen, A. Hallikainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan raskasmetallipitoisuudet. Elintarvikeviraston julkaisuja 3/2004. [2]
- ↑ Anja Hallikainen, Riikka Airaksinen, Panu Rantakokko, Jani Koponen, Jaakko Mannio, Pekka J. Vuorinen, Timo Jääskeläinen, Hannu Kiviranta. Itämeren kalan ja muun kotimaisen kalan ympäristömyrkyt: PCDD/F-, PCB-, PBDE-, PFC- ja OT-yhdisteet. Eviran tutkimuksia 2/2011. ISSN 1797-2981 ISBN 978-952-225-083-4 [3]