EU-kalat: Difference between revisions
(→Calculations: preprocess works) |
|||
Line 62: | Line 62: | ||
* Model run 25.1.2017 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=wzisMQHAqcF30zcl] | * Model run 25.1.2017 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=wzisMQHAqcF30zcl] | ||
* Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=7uTqQeaekwRFwA2J] | * Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=7uTqQeaekwRFwA2J] | ||
* Model run 23.5.2017 with adjusted ovariables euRaw, eu, euRatio [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=qkseWM9rmRysGwKM] | |||
<rcode name="preprocess" label="Preprocess (for developers only)"> | <rcode name="preprocess" label="Preprocess (for developers only)"> | ||
Line 75: | Line 76: | ||
#[3] "Mono-ortho–substituted PCBs" "Non-ortho–substituted PCBs" | #[3] "Mono-ortho–substituted PCBs" "Non-ortho–substituted PCBs" | ||
eu <- Ovariable( | |||
" | "eu", | ||
dependencies = data.frame( | dependencies = data.frame( | ||
Name=c("euRaw", "TEF"), | Name=c("euRaw", "TEF"), | ||
Line 82: | Line 83: | ||
), | ), | ||
formula = function(...) { | formula = function(...) { | ||
eu <- euRaw[,c(1:4, 18, 19)] # THL code, Matrix, Congener, Fish species | |||
colnames( | colnames(eu@output)[1:4] <- c("THLcode", "Matrix", "Compound", "Fish") | ||
temp <- oapply( | temp <- oapply(eu * TEF, cols = "Compound", FUN = "sum") | ||
colnames(temp@output)[colnames(temp@output)=="Group"] <- "Compound" | colnames(temp@output)[colnames(temp@output)=="Group"] <- "Compound" | ||
eu2 <- combine( | eu2 <- combine(eu, temp) | ||
return(eu2) | return(eu2) | ||
} | } | ||
) | ) | ||
Line 108: | Line 96: | ||
euRatio <- Ovariable( | euRatio <- Ovariable( | ||
"euRatio", | "euRatio", | ||
dependencies = data.frame(Name=" | dependencies = data.frame(Name=c("eu")), | ||
formula = function(...) { | formula = function(...) { | ||
euRatio <- | euRatio <- eu[ | ||
eu$Compound == "2378TCDD" & eu$Matrix == "Muscle" & result(eu) != 0 , ] # Zeros cannot be used in ratio estimates | |||
euRatio$Compound <- NULL | euRatio$Compound <- NULL | ||
euRatio <- log10( | euRatio <- log10(eu / euRatio)@output | ||
euRatio <- euRatio[euRatio$Compound %in% | euRatio <- euRatio[!euRatio$Compound %in% c("2378TCDD", "2378-TCDD", "TCDD") , ] | ||
return(euRatio) | return(euRatio) | ||
} | } | ||
Line 130: | Line 118: | ||
# Conclusion: this is ok. Total 2292 rows. | # Conclusion: this is ok. Total 2292 rows. | ||
objects.store(euRaw, | ################## Data for the main congeners and species only | ||
cat("Ovariables euRaw, | |||
#> unique(eu$Congener) | |||
#[1] 2378TCDD 12378PeCDD 123478HCDD 123678HCDD 123789HCDD 1234678HpCDD | |||
#[7] OCDD 2378TCDF 12378PeCDF 23478PeCDF 123478HCDF 123678HCDF | |||
#[13] 123789HCDF 234678HCDF 1234678HpCDF 1234789HpCDF OCDF CoPCB77 ... | |||
# Remove the four PCDDFs with too little data (>70% BDL) and all non-PCDDF | |||
# aggregate(eu@data$euResult, by = eu@data["POP"], FUN = function(x) mean(x == 0)) | |||
#[1] Baltic herring Sprat Salmon Sea trout Vendace | |||
#[6] Roach Perch Pike Pike-perch Burbot | |||
#[11] Whitefish Flounder Bream River lamprey Cod | |||
#[16] Trout Rainbow trout Arctic char | |||
indices <- list( | |||
Compound.TEQ2 = c("TEQdx", "TEQpcb"), | |||
Compound.PCDDF14 = as.character(unique(euRaw@data$POP)[c(1:12, 14, 15)]), # 7 OCDD should be removed | |||
Fish.Fish14 = as.character(unique(euRaw@data$Fish_species)[c(1:4, 6:14, 17)]) | |||
) | |||
# conl | |||
#[1] "2378TCDD" "12378PeCDD" "123478HCDD" "123678HCDD" "123789HCDD" | |||
#[6] "1234678HpCDD" "OCDD" "2378TCDF" "12378PeCDF" "23478PeCDF" | |||
#[11] "123478HCDF" "123678HCDF" "234678HCDF" "1234678HpCDF" | |||
#> fisl | |||
#[1] "Baltic herring" "Sprat" "Salmon" "Sea trout" | |||
#[5] "Roach" "Perch" "Pike" "Pike-perch" | |||
#[9] "Burbot" "Whitefish" "Flounder" "Bream" | |||
#[13] "River lamprey" "Rainbow trout" | |||
objects.store(euRaw, eu, euRatio, indices) | |||
cat("Ovariables euRaw, eu, and euRatio and list indices stored.\n") | |||
</rcode> | </rcode> | ||
Line 158: | Line 177: | ||
objects.latest("Op_en3104", code_name = "preprocess") # [[EU-kalat]] | objects.latest("Op_en3104", code_name = "preprocess") # [[EU-kalat]] | ||
conl <- indices$Compound.TEQ2 | |||
fisl <- indices$Fish.Fish14 | |||
fisl <- | |||
C <- length(conl) | C <- length(conl) | ||
Fi <- length(fisl) | Fi <- length(fisl) | ||
Line 197: | Line 185: | ||
fisl | fisl | ||
eu <- EvalOutput(eu) | |||
replaces <- list( | replaces <- list( | ||
Line 207: | Line 195: | ||
for(i in 1:length(replaces)) { | for(i in 1:length(replaces)) { | ||
levels( | levels(eu$Compound)[replaces[[i]][1]] <- replaces[[i]][2] | ||
} | } | ||
eu <- oapply(eu, INDEX = "THLcode", FUN = "sum") | |||
# Hierarchical Bayes model. | # Hierarchical Bayes model. | ||
Line 283: | Line 271: | ||
} # if(FALSE) | } # if(FALSE) | ||
fishsamples <- unkeep( | fishsamples <- unkeep(eu, prevresults = TRUE, sources = TRUE)@output | ||
fishsamples <- fishsamples[fishsamples$Compound %in% conl & fishsamples$Matrix == "Muscle" , ] | fishsamples <- fishsamples[fishsamples$Compound %in% conl & fishsamples$Matrix == "Muscle" , ] | ||
fishsamples <- reshape( | fishsamples <- reshape( | ||
fishsamples, | fishsamples, | ||
v.names = " | v.names = "euResult", | ||
idvar = "THLcode", | idvar = "THLcode", | ||
timevar = "Compound", | timevar = "Compound", | ||
Line 294: | Line 282: | ||
) | ) | ||
# colnames( | # colnames(eu@output) | ||
# "THLcode" "Matrix" "Compound" "Fish" "euRawSource" | # "THLcode" "Matrix" "Compound" "Fish" "euRawSource" | ||
# [6] "TEFversion" "TEFrawSource" "TEFSource" "Source" " | # [6] "TEFversion" "TEFrawSource" "TEFSource" "Source" "euResult" | ||
# [11] " | # [11] "euSource" | ||
oprint(head(fishsamples)) | oprint(head(fishsamples)) | ||
Line 382: | Line 370: | ||
euRatio <- EvalOutput(euRatio) | euRatio <- EvalOutput(euRatio) | ||
ggplot( | # Leave only the main fish species and congeners and remove others | ||
eu[eu$Compound %in% conl & eu$Fish %in% fisl , ] | |||
ggplot(eu@output, aes(x = euResult, colour = Fish))+geom_density()+ | |||
facet_wrap(~ Compound) + scale_x_log10() | facet_wrap(~ Compound) + scale_x_log10() | ||
Line 413: | Line 404: | ||
plot(coda.j) | plot(coda.j) | ||
</rcode> | </rcode> | ||
Revision as of 07:35, 23 May 2017
[show] This page is a study.
The page identifier is Op_en3104 |
---|
EU-kalat is a study, where concentrations of PCDD/Fs, PCBs, PBDEs and heavy metals have been measured from fish
Question
The scope of EU-kalat study was to measure concentrations of persistent organic pollutants (POPs) including dioxin (PCDD/F), PCB and BDE in fish from Baltic sea and Finnish inland lakes and rivers. [1] [2] [3].
Answer
The original sample results can be acquired from Opasnet base. The study showed that levels of PCDD/Fs and PCBs depends especially on the fish species. Highest levels were on salmon and large sized herring. Levels of PCDD/Fs exceeded maximum level of 4 pg TEQ/g fw multiple times. Levels of PCDD/Fs were correlated positively with age of the fish.
Mean congener concentrations as WHO2005-TEQ in Baltic herring can be printed out with the Run code below.
Rationale
Data
Data was collected between 2009-2010. The study contains years, tissue type, fish species, and fat content for each concentration measurement. Number of observations is 285.
There is a new study EU-kalat 3, which will produce results in 2016.
Calculations
- Preprocess model 22.2.2017 [4]
- Objects used in Benefit-risk assessment of Baltic herring and salmon intake
- Model run 25.1.2017 [5]
- Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [6]
- Model run 23.5.2017 with adjusted ovariables euRaw, eu, euRatio [7]
Bayes model for dioxin concentrations
- Model run 28.2.2017 [8]
- Model run 28.2.2017 with corrected survey model [9]
- Model run 28.2.2017 with Mu estimates [10]
- Model run 1.3.2017 [11]
- Model run 23.4.2017 [12] produces list conc.param and ovariable concentration
- Model run 24.4.2017 [13]
- Model run 19.5.2017 without ovariable concentration [14] ⇤--#: . The model does not mix well, so the results should not be used for final results. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: attack)
- Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [15]
Initiate concentration
- Model run 19.5.2017 [16]
See also
References
- ↑ A. Hallikainen, H. Kiviranta, P. Isosaari, T. Vartiainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan dioksiinien, furaanien, dioksiinien kaltaisten PCB-yhdisteiden ja polybromattujen difenyylieettereiden pitoisuudet. Elintarvikeviraston julkaisuja 1/2004. [1]
- ↑ E-R.Venäläinen, A. Hallikainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan raskasmetallipitoisuudet. Elintarvikeviraston julkaisuja 3/2004. [2]
- ↑ Anja Hallikainen, Riikka Airaksinen, Panu Rantakokko, Jani Koponen, Jaakko Mannio, Pekka J. Vuorinen, Timo Jääskeläinen, Hannu Kiviranta. Itämeren kalan ja muun kotimaisen kalan ympäristömyrkyt: PCDD/F-, PCB-, PBDE-, PFC- ja OT-yhdisteet. Eviran tutkimuksia 2/2011. ISSN 1797-2981 ISBN 978-952-225-083-4 [3]