ERF of omega-3 fatty acids: Difference between revisions

From Opasnet
Jump to navigation Jump to search
Line 25: Line 25:
<t2b index="Exposure agent,Trait,Response metric,Exposure route,Exposure metric,Exposure unit,ERF parameter,Observation" locations="Threshold,ERF" desc="Description" unit="-">
<t2b index="Exposure agent,Trait,Response metric,Exposure route,Exposure metric,Exposure unit,ERF parameter,Observation" locations="Threshold,ERF" desc="Description" unit="-">
DHA|Child's intelligence|Change in IQ points|Placenta|Maternal intake|mg/kg bw/day|ERS bw|0|0.07 +- 0.01|Cohen et al. 2005; Gradowska 2013; Standard deviation
DHA|Child's intelligence|Change in IQ points|Placenta|Maternal intake|mg/kg bw/day|ERS bw|0|0.07 +- 0.01|Cohen et al. 2005; Gradowska 2013; Standard deviation
DHA|Child's IQ|Change in IQ points|Placenta|Maternal intake|mg /day|ERS|0|0.0013 (0.0008 - 0.0018|Cohen et al. 2005; also according to Zeilmaker 2013
DHA|Child's IQ|Change in IQ points|Placenta|Maternal intake|mg /day|ERS|0|0.0013 (0.0008 - 0.0018)|Cohen et al. 2005; also according to Zeilmaker 2013
Omega3|Coronary heart disease|Mortality|Ingestion|Intake from fish|mg/day EPA+DHA|RR|0|0.9980 +- 0.000396|Mozaffarian and Rimm 2006; Gradowska 2013 slope = -0.002, SD = exp(-0.002)-exp(-0.002+3.97E-4)
Omega3|Coronary heart disease|Mortality|Ingestion|Intake from fish|mg/day EPA+DHA|RR|0|0.9980 +- 0.000396|Mozaffarian and Rimm 2006; Gradowska 2013 slope = -0.002, SD = exp(-0.002)-exp(-0.002+3.97E-4)
Omega3|CHD|Arrythmia mortality|Ingestion|Intake from fish|mg/day EPA+DHA|Relative Hill|200|-0.3|Mozaffarian and Rimm 2006
Omega3|CHD|Arrythmia mortality|Ingestion|Intake from fish|mg/day EPA+DHA|Relative Hill|200|-0.3|Mozaffarian and Rimm 2006

Revision as of 20:18, 15 October 2014



Question

What is the exposure-response function (ERF) of omega-3 fatty acids on several health end points?

Answer

+ Show code

Rationale

Data

ERF of omega-3 fatty acids: Difference between revisions(-)
ObsExposure agentTraitResponse metricExposure routeExposure metricExposure unitERF parameterThresholdERFDescription
1DHAChild's intelligenceChange in IQ pointsPlacentaMaternal intakemg/kg bw/dayERS bw00.07 +- 0.01Cohen et al. 2005; Gradowska 2013; Standard deviation
2DHAChild's IQChange in IQ pointsPlacentaMaternal intakemg /dayERS00.0013 (0.0008 - 0.0018)Cohen et al. 2005; also according to Zeilmaker 2013
3Omega3Coronary heart diseaseMortalityIngestionIntake from fishmg/day EPA+DHARR00.9980 +- 0.000396Mozaffarian and Rimm 2006; Gradowska 2013 slope = -0.002, SD = exp(-0.002)-exp(-0.002+3.97E-4)
4Omega3CHDArrythmia mortalityIngestionIntake from fishmg/day EPA+DHARelative Hill200-0.3Mozaffarian and Rimm 2006
5Omega3CHD2MortalityIngestionIntake from fishmg/day EPA+DHARelative Hill47-0.17 (-0.25 - -0.088)Cohen et al 2005. "antiarrhythmic effect". No-exposure is <1 serving/mo, therefore ED50 = two servings per month = 1400 mg/mo = 47 mg/d
6Omega3CHD2MortalityIngestionIntake from fishmg/day EPA+DHARR00.99951 (0.99934 - 0.99989)Cohen et al 2005 "antiatherosclerotic effect". 1-0.039*0.01
7FishSubclinical brain infarct (one or more)PrevalenceIngestionIntake of tuna/other fish≥3 times/week vs. <1/monthRR00.74 (0.54 - 1.01)Virtanen et al. 2008; 95% CI
8FishAny prevalent subclinical brain infarctPrevalenceIngestionIntake of tuna/other fishEach one serving per weekRR00.93 (0.88 - 0.994)Virtanen et al. 2008; 95% CI
9FishSubclinical brain infarct (one or more)IncidenceIngestionIntake of tuna/other fish≥3 times/week vs. <1/monthRR00.56 (0.30 - 1.07)Virtanen et al. 2008; 95% CI
10FishAny incident subclinical brain infarctIncidenceIngestionIntake of tuna/other fishEach one serving per weekRR00.89 (0.78 - 0.993)Virtanen et al. 2008; 95% CI
11FishStatus of cerebral white matterGrade scoreIngestionIntake of tuna/other fishEach one serving per weekERS00.038Virtanen et al. 2008; 95% CI
ERF publications
ERF data as described in original articles
Exposure agent Trait Response metric Exposure route Exposure metric Exposure unit ERF parameter Threshold ERF Description
DHA Child´s IQ Change in IQ points Placenta Maternal intake mg/kg bw/day ERS 0 0.07(±0.01) Cohen et al. 2005; Gradowska 2013
Omega3 CHD Δlog(CHD mortality rate) Ingestion Intake from fish mg/day EPA+DHA ERS 0 -0.002 (±3.97E-4) Mozaffarian and Rimm 2006; Gradowska 2013
Fish Subclinical brain infarct (one or more) Prevalence Ingestion Intake of tuna/other fish =3 times/week vs. <1/month RR 0 0.74(0.54-1.01) Virtanen et al. 2008
Fish Any prevalent subclinical brain infarct Prevalence Ingestion Intake of tuna/other fish Each one serving per week Decrease in RR % 0 7(0.6-12) Virtanen et al. 2008
Fish Subclinical brain infarct (one or more) Incidence Ingestion Intake of tuna/other fish =3 times/week vs. <1/month RR 0 0.56(0.30-1.07) Virtanen et al. 2008
Fish Any incident subclinical brain infarct Incidence Ingestion Intake of tuna/other fish Each one serving per week Decrease in RR % 0 11(0.7-22) Virtanen et al. 2008
Fish Status of cerebral white matter Grade score Ingestion Intake of tuna/other fish Each one serving per week Increase in grade score % 0 3.8 Virtanen et al. 2008

Exposure-response of fish oil intake for MI risk in adults is indexed by variable age. It applies to age categories > 18 years.

The study by Cohen et al. 2005 [1] estimates that increasing maternal docosahexaenoic acid (DHA) intake by 100 mg/day increases child's IQ by 0.13 points D↷. This value represents central estimate while the upper and lower bound for this ERF is 0.08 and 0.18. Triangular distribution is used.

In a recent study, 3660 over 65-year-old individuals were monitored for five years, and the change in small brain infarctions was observed by magnetic resonance imageing. The infaction risk was 25 % lower in those who ate at least three portions of omega-3-rich fish meals per week, and 13 % lower in those who ate one meal per week. [2]

Fernandez-Jarne et al. [3] examined the relationship between intake of fish and n-3 PUFA and the risk of first acute myocardial infarction (AMI) in a low risk population from Navarre (Spain). They found that the n-3 PUFA intake has a protective effect on AMI. The adjusted odds ratio (OR) for the second and third tertile of n-3 PUFA intake were 0.44 (95% Cl, 0.21-0.91) and 0.47 (95% Cl, 0.22-1.00), respectively. The trend test was not statistically significant. D↷

Mozaffarian and Rimm [4] estimated that at intakes between 0 and 250 mg/d, the relative risk of coronary heart disease (CHD) death is lower by 14.6% (95% CI: 8% to 21%) per each 100 mg/d of EPA and DHA intake and that at higher intakes ( > 250 mg/d) the risk reduction is 0.0% (95% CI: -0.9% to 0.8%) per each 100 mg/d.

The ERF of omega-3 fatty acids (DHA+EPA) intake from fish (in unit of mg/kg bw-day) on the CHD mortality is estimated based on information provided in [4]. First, the central estimate and the 95% CI for the change (in this case decrease) in natural logarithm of relative risk (RR) of CHD mortality per unit change in omega-3 fatty acids intake (in unit of mg/day) in both intake intervals were derived. In general, the relationship between the percent change in RR (%RR) associated with c-unit increase in omega-3 fatty acids intake and the incremental change in lnRR (beta) per unit change in omega-3 fatty acids intake is beta = (1/c)*ln((%RR/100)+1). Normal distribution was chosen to describe the uncertainty in the parameter of the log-linear model for RR in each intake interval. For intake of EPA+DHA between 0 and 250 mg/day the mean and the standard deviation of parameter distribution are -0.0016 and 0.0004, for higher intakes 0 and 0.0005. Then, the distribution of ERF of omega-3 fatty acids intake from fish in units of mg/kg bw-day was obtained by multiplying ERFs of omega-3 fatty acids intake measured in mg/day by the body weight of adult.

Unit
lnRR/ 1 (mg/kg bw-day) change in EPA+DHA intake from fish
Beneris distributions
For intakes of EPA+DHA from fish between 0 and 250 mg/day: N(-0.0016,0.0004)*BW
For intakes of EPA+DHA from fish higher than 250 mg/day: N(0,0.0005)*BW
Summary of dose–response relationships[5]
Health effect Relationship Central estimate Uncertainty
Fish consumption and CHD mortality ΔRR for some fish consumption vs no fish consumption (<1 serving/month) −17% 95% CIa: −8.8% to −25%
ΔRR per additional serving/week −3.9% 95% CI a: −1.1% to −6.6%
Fish consumption and stroke incidence ΔRR for some fish consumption vs no fish consumption (<1 serving/month) −12% 95% CIa: +1.0% to −25%
ΔRR per additional serving/week −2.0% 95% CIa: +2.7% to −6.6%
MeHg exposure and cognitive development ΔIQ per μg/g total Hg in maternal hair −0.7 pts Bounds: 0 to 1.5 pts
DHA intake and cognitive development ΔIQ per g/day maternal intake of DHA 1.3 pts Bounds: 0.8 to 1.8 pts

a 95% CI is based on the distribution for this coefficient calculated from the regression analysis used to develop the dose–response relationship for CHD or stroke. CHD, coronary heart disease; CI, confidence interval; DHA, docosahexaenoic acid; MeHg, methyl mercury; pts, points; RR, relative risk. Serving size was 100 g.

Here we need to convert the serving size to omega-3 intake. It depends on the average omega-3 content in the diets of the patients in the studies, and it is not known to us. Therefore, we may assume that it is higher than in lean fish (0 - 0.5 %) and lower than in fatty fish (1-2 %), i.e. say 0.7 % or 700 mg per serving. Therefore, the published RR changes (per servings/week) must be multiplied by 1 per (servings * 700 mg/serving / (week * 7 d/week) = 0.01 * RR changes per mg/d. CHD2 is used as the trait to prevent double counting with the other ERFs based on Mozaffarian and Rimm.

In addition, Cohen[5] concluded that the ERFs for CHD and stroke are non-linear with a larger reduction in risk between non-consumers and some-consumers (the limit defined as 1 serving per month). In addition, a linear incremental benefit was estimated for intakes more than 1 serving per week. This results in two independent ERFs where the low-dose "antiarrhythmic" effect follows Relative Hill function and the high-dose "antiatherosclerotic" effect follows RR function. Cohen actually assumed a negative correlation between these, but this is not easy to implement with the current HIA ovariables and therefore we ignore the correlation; this results in an increase of the estimated uncertainty in the model.

Calculations

+ Show code

See also

References

  1. Cohen, J.T., PhD, Bellinger, D.C, PhD, W.E., MD, Bennett A., and Shaywitz B.A. 2005b. A Quantitative Analysis of Prenatal Intake of n-3 Polyunsaturated Fatty Acids and Cognitive Development. American Journal of Preventive Medicine 2005;29(4):366–374).
  2. Fish consumption and risk of subclinical brain abnormalities on MRI in older adults Jyrki K. Virtanen, David S. Siscovick, Will T. Longstreth, Lewis H. Kuller, Dariush Mozaffarian Neurology 2008;71:439–446.
  3. Fernandez-Jarne E, Garrido FA, Gutierrez AA, Arrillaga CDF, Martinez-Gonzales MA. Dietary intake of n-3 fatty acids and the risk of acute myocardial infarction: a case-control study. (In Spanish) 2002;118:121–5.
  4. Jump up to: 4.0 4.1 Mozaffarian D., Rimm E.B., Fish intake, contaminants, and human health. Evaluating the risks and the benefits. (Reprinted) JAMA, 2006. Vol 296, No. 15
  5. Jump up to: 5.0 5.1 Cohen JT, Bellinger DC, Shaywitz BA. A quantitative analysis of prenatal methyl mercury exposure and cognitive development. Am J Prev Med. 2005 Nov;29(4):353-65. [1]