Damage vector for life-cycle analysis: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(→‎Formula: variables renamed, code debugged but units are not clear)
Line 100: Line 100:
print(xtable(coffee), type = 'html')
print(xtable(coffee), type = 'html')


coffee <- merge(data.frame(DirectRequirements = rownames(impactsPerDollar)), coffee, all.x = TRUE)
coffee <- merge(data.frame(directRequirements = rownames(impactsPerDollar)), coffee, all.x = TRUE)
coffee$Result <- ifelse(is.na(coffee$Result), 0, coffee$Result)
coffee$Result <- ifelse(is.na(coffee$Result), 0, coffee$Result)
# head(coffee)
temp <- tidy(opbase.data("Op_en5904"), objname="normalisation")
temp <- temp[ , colnames(temp) != "Obs"]


normalisation <- EvalOutput(new("ovariable",  
normalisation <- EvalOutput(new("ovariable",  
name = "normalisation",  
name = "normalisation",  
data = tidy(opbase.data("Op_en5904"), objname="normalisation")
data = temp
))
))


normalisation@output
# normalisation@output


impactsPerDollar <- impactsPerDollar * coffee$Result # Multiply data matrix with activities.
impactsPerDollar <- impactsPerDollar * coffee$Result # Multiply data matrix with activities.
Line 127: Line 132:
colnames(out)[colnames(out) == "value"] <- "Result"
colnames(out)[colnames(out) == "value"] <- "Result"


damages <- EvalOutput(new("ovariable", name = "Damage", data = out))
damages <- EvalOutput(new("ovariable", name = "damages", data = out))


head(damages@output)
#head(damages@output)


damageFractions <- damages / normalisation * 365
damageFractions <- damages / normalisation * 365


head(damageFractions@output)
#head(damageFractions@output)


cat("Effects smaller than", limit*100, "% of the total effect are not shown.\n")
cat("Effects smaller than", limit*100, "% of the total effect are not shown.\n")


ggplot(out, aes(x = Damage, weight = Result, fill = directRequirements)) + geom_bar() +
ggplot(damageFractions@output, aes(x = damages, weight = Result, fill = directRequirements)) + geom_bar() +
theme_grey(base_size = 24) +
theme_grey(base_size = 24) +
theme(axis.text.x = element_text(angle = 45)) +
theme(axis.text.x = element_text(angle = 45)) +

Revision as of 10:24, 17 January 2013



Question

What are the damages per unit purchased commodity using a life-cycle assessment?

Answer

Rationale

Dependencies

Data

damagefactors(-)
ObsUnique_categoriesHuman healthEcosystem qualityClimate changeResourcesWater consumption
1Carcinogens0.00000280000
2Non-carcinogens0.00000280000
3Respiratory inorganics0.00070000
4Ionizing radiation0.000000000210000
5Ozone layer depletion0.001050000
6Respiratory organics0.000002130000
7Aquatic ecotoxicity00.0000502000
8Terrestrial ecotoxicity00.00791000
9Terrestrial acidification/nutrification01.04000
10Land occupation01.09000
11Aquatic acidification00000
12Aquatic eutrophication00000
13Global warming00100
14Non-renewable energy00010
15Mineral extraction00010
16Water withdrawal00000
17Water consumption00001

Example of coffee cup

coffeecupinputs(Euro)
ObsdirectRequirementsResult
131131A - Sugar cane mills and refining0.1
2112120 - Dairy cattle and milk production0.2
3311820 - Cookie, cracker, and pasta manufacturing0.5
4311920 - Coffee and tea manufacturing0.2
5221100 - Electric power generation, transmission, and distribution0.1
6322299 - All other converted paper product manufacturing0.04
7335210 - Small electrical appliance manufacturing0
8335221 - Household cooking appliance manufacturing0.01

Formula

What is the smallest fraction of the total effect you want to see?:

+ Show code

See also

Keywords

References


Related files

<mfanonymousfilelist></mfanonymousfilelist>