Damage vector for life-cycle analysis: Difference between revisions
Jump to navigation
Jump to search
(→Formula: reshape corrected, now it works) |
(→Formula: coffee cup activities added) |
||
Line 35: | Line 35: | ||
Water withdrawal|0|0|0|0|0 | Water withdrawal|0|0|0|0|0 | ||
Water consumption|0|0|0|0|1 | Water consumption|0|0|0|0|1 | ||
</t2b> | |||
===Example of coffee cup=== | |||
<t2b name="coffeecupinputs" index="Activity" obs="Result" unit="Euro"> | |||
31131A Sugar cane mills and refining|0.1 | |||
112120 Dairy cattle and milk production|0.2 | |||
311820 Cookie cracker and pasta manufacturing|0.5 | |||
311920 Coffee and tea manufacturing|0.2 | |||
221100 Electric power generation transmission and distribution|0.1 | |||
322299 All other converted paper product manufacturing|0.04 | |||
335210 Small electrical appliance manufacturing|0 | |||
335221 Household cooking appliance manufacturing|0.01 | |||
</t2b> | </t2b> | ||
===Formula=== | ===Formula=== | ||
<rcode> | <rcode graphics="1"> | ||
library(OpasnetUtils) | library(OpasnetUtils) | ||
library(xtable) | library(xtable) | ||
library(ggplot2) | |||
library(reshape) | |||
# Take the damage factor table from this page. | |||
data <- reshape( | damages <- opbase.data("Op_en5902.damagefactors") # Download the data from Opasnet Base. | ||
damages <- reshape( # Reshape it into the wide format. | |||
damages[ , colnames(damages) != "Obs"], | |||
times = "Result", | |||
timevar = "Unique_categories", | |||
idvar = "Damage_categories", | |||
direction = "wide" | |||
) | |||
colnames(damages) <- gsub("Result.", "", colnames(damages)) # Remove extra "Result." from colnames. | |||
rownames(damages) <- damages[[1]] # Make the first column the rownames. | |||
damages <- damages[ , 2:ncol(damages)] # Remove the first column. | |||
damages <- t(as.matrix(damages)) # Turn the data.frame into a matrix and transpose it. | |||
# Take the impact factor table from the database. Do the same procedures as with damages. | |||
data <- opbase.data("Op_en5902") | |||
data <- reshape( | |||
data, | |||
times = "Result", | |||
timevar = "Unique_categories", | |||
idvar = "Purchasing_sector", | |||
direction = "wide" | |||
) | |||
colnames(data) <- gsub("Result.", "", colnames(data)) | colnames(data) <- gsub("Result.", "", colnames(data)) | ||
rownames(data) <- data[[1]] | |||
data <- data[ , 2:ncol(data)] | |||
data <- as.matrix(data) | data <- as.matrix(data) | ||
# Take the coffee cup activities. | |||
coffee <- opbase.data("Op_en5902.coffeecupinputs") # Download the data from Opasnet Base. | |||
head(coffee) | |||
coffee <- merge(data.frame(Activity = rownames(data)), coffee, all.x = TRUE) | |||
coffee$Result <- ifelse(is.na(coffee$Result), 0, coffee$Result) | |||
head(coffee) | |||
data <- data * coffee$Result # Multiply data matrix with activities. | |||
head(data) | head(data) | ||
out <- data %*% damages | |||
out <- as.data.frame(out) | |||
head(out) | |||
out$idvars <- rownames(out) | |||
out <- melt(out, idvars = "idvars") | |||
head(out) | |||
ggplot(out, aes(x = variable, weight = value)) + geom_bar() | |||
ggplot(out, aes(x = variable, weight = value, fill = idvars)) + geom_bar() | |||
</rcode> | </rcode> |
Revision as of 22:15, 16 January 2013
[show] |
---|
Question
What are the damages per unit purchased commodity using a life-cycle assessment?
Answer
Rationale
Dependencies
Data
Obs | Unique_categories | Human health | Ecosystem quality | Climate change | Resources | Water consumption |
---|---|---|---|---|---|---|
1 | Carcinogens | 0.0000028 | 0 | 0 | 0 | 0 |
2 | Non-carcinogens | 0.0000028 | 0 | 0 | 0 | 0 |
3 | Respiratory inorganics | 0.0007 | 0 | 0 | 0 | 0 |
4 | Ionizing radiation | 0.00000000021 | 0 | 0 | 0 | 0 |
5 | Ozone layer depletion | 0.00105 | 0 | 0 | 0 | 0 |
6 | Respiratory organics | 0.00000213 | 0 | 0 | 0 | 0 |
7 | Aquatic ecotoxicity | 0 | 0.0000502 | 0 | 0 | 0 |
8 | Terrestrial ecotoxicity | 0 | 0.00791 | 0 | 0 | 0 |
9 | Terrestrial acidification/nutrification | 0 | 1.04 | 0 | 0 | 0 |
10 | Land occupation | 0 | 1.09 | 0 | 0 | 0 |
11 | Aquatic acidification | 0 | 0 | 0 | 0 | 0 |
12 | Aquatic eutrophication | 0 | 0 | 0 | 0 | 0 |
13 | Global warming | 0 | 0 | 1 | 0 | 0 |
14 | Non-renewable energy | 0 | 0 | 0 | 1 | 0 |
15 | Mineral extraction | 0 | 0 | 0 | 1 | 0 |
16 | Water withdrawal | 0 | 0 | 0 | 0 | 0 |
17 | Water consumption | 0 | 0 | 0 | 0 | 1 |
Example of coffee cup
Obs | Activity | Result |
---|---|---|
1 | 31131A Sugar cane mills and refining | 0.1 |
2 | 112120 Dairy cattle and milk production | 0.2 |
3 | 311820 Cookie cracker and pasta manufacturing | 0.5 |
4 | 311920 Coffee and tea manufacturing | 0.2 |
5 | 221100 Electric power generation transmission and distribution | 0.1 |
6 | 322299 All other converted paper product manufacturing | 0.04 |
7 | 335210 Small electrical appliance manufacturing | 0 |
8 | 335221 Household cooking appliance manufacturing | 0.01 |
Formula
See also
Keywords
References
Related files
<mfanonymousfilelist></mfanonymousfilelist>