EU-kalat: Difference between revisions
(13 intermediate revisions by the same user not shown) | |||
Line 455: | Line 455: | ||
==== Initiate conc_pcddf for PFAS disease burden study ==== | ==== Initiate conc_pcddf for PFAS disease burden study ==== | ||
===== Initiate euw data.frame ===== | |||
This code is similar to preprocess but is better and includes PFAS concentrations from [[:op_fi:PFAS-yhdisteiden tautitaakka]]. It produces data.frame euw that is the EU-kalat + PFAS data in wide format and, for PFAS but not EU-kalat, a sampled value for measurements below the level of quantification. | |||
<rcode name="preprocess2" label="Preprocess and initiate data.frame euw (for developers only)" embed=1> | |||
# This is code Op_en3104/preprocess2 on page [[EU-kalat]] | |||
library(OpasnetUtils) | library(OpasnetUtils) | ||
library(ggplot2) | |||
library(reshape2) | |||
openv.setN(1) | |||
" | opts = options(stringsAsFactors = FALSE) | ||
dependencies = data.frame(Name=c("TEF"),Ident=c("Op_en4017/initiate")) | euRaw <- Ovariable("euRaw", ddata = "Op_en3104", subset = "POPs") # [[EU-kalat]] | ||
eu <- Ovariable( | |||
"eu", | |||
dependencies = data.frame( | |||
Name=c("euRaw", "TEF"), | |||
Ident=c(NA,"Op_en4017/initiate") | |||
), | |||
formula = function(...) { | formula = function(...) { | ||
out <- euRaw | |||
out$Length<-as.numeric(as.character(out$Length_mean_mm)) | |||
out$Year <- as.numeric(substr(out$Catch_date, nchar(as.character(out$Catch_date))-3,100)) | |||
out$Weight<-as.numeric(as.character(out$Weight_mean_g)) | |||
out <- out[,c(1:6, 8: 10, 14:17, 19:22, 18)] # See below | |||
#[1] "ﮮTHL_code" "Matrix" "POP" "Fish_species" | |||
#[5] "Catch_site" "Catch_location" "Catch_season" "Catch_square" | |||
#[9] "N_individuals" "Sex" "Age" "Fat_percentage" | |||
#[13] "Dry_matter_percentage" "euRawSource" "Length" "Year" | |||
#[17] "Weight" "euRawResult" | |||
colnames(out@output)[1:13] <- c("THLcode", "Matrix", "Compound", "Fish", "Site", "Location", "Season", | |||
"Square","N","Sex","Age","Fat","Dry_matter") | |||
out@marginal <- colnames(out)!="euRawResult" | |||
tmp <- oapply(out * TEF, cols = "Compound", FUN = "sum") | |||
colnames(tmp@output)[colnames(tmp@output)=="Group"] <- "Compound" | |||
# levels(tmp$Compound) | |||
# [1] "Chlorinated dibenzo-p-dioxins" "Chlorinated dibenzofurans" "Mono-ortho-substituted PCBs" | |||
# [4] "Non-ortho-substituted PCBs" | |||
levels(tmp$Compound) <- c("PCDD","PCDF","moPCB","noPCB") | |||
out <- OpasnetUtils::combine(out, tmp) | |||
out$Compound <- factor( # Compound levels are ordered based on the data table on [[TEF]] | |||
out$Compound, | |||
levels = unique(c(levels(TEF$Compound), unique(out$Compound))) | |||
) | |||
out$Compound <- out$Compound[,drop=TRUE] | |||
return(out) | |||
} | |||
) | |||
eu <- EvalOutput(eu) | |||
euw <- reshape( | |||
eu@output, | |||
v.names = "euResult", | |||
idvar = c("THLcode", "Matrix", "Fish"), # , "Site","Location","Season","Square","N","Sex","Age","Fat", "Dry_matter","Length","Year","Weight" | |||
timevar = "Compound", | |||
drop = c("euRawSource","TEFversion","TEFrawSource","TEFSource","Source","euSource"), | |||
direction = "wide" | |||
) | |||
colnames(euw) <- gsub("euResult\\.","",colnames(euw)) | |||
euw$PCDDF <- euw$PCDD + euw$PCDF | |||
euw$PCB <- euw$noPCB + euw$moPCB | |||
euw$TEQ <- euw$PCDDF + euw$PCB | |||
euw$PFOA <- euw$PFOA / 1000 # pg/g --> ng/g | |||
euw$PFOS <- euw$PFOS / 1000 # pg/g --> ng/g | |||
euw$PFAS <- euw$PFOA + euw$PFOS | |||
#################### PFAS measurements from Porvoo | |||
conc_pfas_raw <- EvalOutput(Ovariable( | |||
"conc_pfas_raw", | |||
data=opbase.data("Op_fi5932", subset="PFAS concentrations"), # [[PFAS-yhdisteiden tautitaakka]] | |||
unit="ng/g f.w.") | |||
)@output | |||
conc_pfas_raw <- reshape(conc_pfas_raw, | |||
v.names="conc_pfas_rawResult", | |||
timevar="Compound", | |||
idvar=c("Obs","Fish"), | |||
drop="conc_pfas_rawSource", | |||
direction="wide") | |||
colnames(conc_pfas_raw) <- gsub("conc_pfas_rawResult\\.","",colnames(conc_pfas_raw)) | |||
conc_pfas_raw <- within(conc_pfas_raw, PFAS <- PFOS + PFHxS + PFOA + PFNA) | |||
conc_pfas_raw$Obs <- NULL | |||
euw <- orbind(euw, conc_pfas_raw) | |||
objects.store(euw) | |||
cat("Data.frame euw stored.\n") | |||
</rcode> | |||
===== Initiate conc_param using Bayesian approach ===== | |||
Bayesian approach for PCDDF, PCB, OT, PFAS. | |||
* Model run 2021-03-08 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=ZvJDOo7xL8d7x7EI] | |||
* Model run 2021-03-08 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=VpSUS4pfGavspLG9] with the fish needed in PFAS assessment | |||
* Model run 2021-03-12 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=Lc9KWY7r1tTuGWVD] using euw | |||
* Model run 2021-03-13 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=pTiMHkD4Lq0EdLab] with location parameter for PFAS | |||
* Model run 2021-03-17 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=Mrko9rrynNRELP07] location parameter not plotted because problems with older R version in Opasnet. | |||
<rcode name="pollutant_bayes" label="Initiate conc_param with PCDDF, PFAS, OT (for developers only)" embed=0 graphics=1> | |||
# This is code Op_en3104/pollutant_bayes on page [[EU-kalat]] | |||
# The code is also available at https://github.com/jtuomist/pfas/blob/main/conc_pcddf_preprocess.R | |||
library(OpasnetUtils) | |||
library(reshape2) | |||
library(rjags) # JAGS | |||
library(ggplot2) | |||
library(MASS) # mvrnorm | |||
library(car) # scatterplotMatrix | |||
#' Find the level of quantification for dinterval function | |||
#' @param df data.frame | |||
#' @return data.matrix | |||
add_loq <- function(df) { # This should reflect the fraction of observations below LOQ. | |||
LOQ <- unlist(lapply(df, FUN = function(x) min(x[x!=0], na.rm=TRUE))) | |||
out <- sapply( | |||
1:length(LOQ), | |||
FUN = function(x) ifelse(df[,x]==0, 0.5*LOQ[x], df[,x]) | |||
) | |||
out <- data.matrix(out) | |||
return(out) | |||
} | |||
#size <- Ovariable("size", ddata="Op_en7748", subset="Size distribution of fish species") | |||
#time <- Ovariable("time", data = data.frame(Result=2015)) | |||
objects.latest("Op_en3104", code_name = "preprocess2") # [[EU-kalat]] euw | |||
# Hierarchical Bayes model. | |||
# PCDD/F concentrations in fish. | |||
# It uses the TEQ sum of PCDD/F (PCDDF) as the total concentration | |||
# of dioxin and PCB respectively for PCB in fish. | |||
# PCDDF depends on size of fish, fish species, catchment time, and catchment area, | |||
# but we omit catchment area. In addition, we assume that size of fish has | |||
# zero effect for other fish than Baltic herring. | |||
# Catchment year affects all species similarly. | |||
eu3 <- euw[!colnames(euw) %in% c("MPhT","DOT","BDE138")] # No values > 0 | |||
eu3 <- eu3[eu3$Matrix == "Muscle" , ] | |||
eu3$Locat <- ifelse(eu3$Location=="Porvoo",2, | |||
ifelse(eu3$Location=="Helsinki, Vanhankaupunginlahti Bay",3,1)) | |||
locl <- c("Finland","Porvoo","Helsinki") | |||
#conl_nd <- c("PFAS","PFOA","PFOS","DBT","MBT","TBT","DPhT","TPhT") | |||
conl_nd <- c("PFAS","PFOS") # TBT would drop Porvoo measurements | |||
fisl <- fisl_nd <- c("Baltic herring","Bream","Flounder","Perch","Roach","Salmon","Whitefish") | |||
eu4 <- eu3[rowSums(is.na(eu3[conl_nd]))<length(conl_nd) & eu3$Fish %in% fisl_nd , | |||
c(1:5,match(c("Locat",conl_nd),colnames(eu3)))] | |||
conc_nd <- add_loq(eu4[conl_nd]) | |||
conl <- c("TEQ","PCDDF","PCB") # setdiff(colnames(eu3)[-(1:5)], conl_nd) | |||
eu3 <- eu3[!is.na(eu3$PCDDF) & eu3$Fish %in% fisl , c(1:5, match(conl,colnames(eu3)))] | |||
oprint(head(eu3)) | |||
oprint(head(eu4)) | |||
C <- length(conl) | |||
Fi <- length(fisl) | |||
N <- 200 | |||
thin <- 100 | |||
conl | |||
fisl | |||
conl_nd | |||
fisl_nd | |||
eu3 <- eu3[rowSums(is.na(eu3))==0,] | |||
conc <- add_loq(eu3[conl]) # Remove rows with missing data. | |||
# The model assumes that all fish groups have the same Omega but mu varies. | |||
mod <- textConnection( | |||
" | |||
model{ | |||
for(i in 1:S) { # S = fish sample | |||
# below.LOQ[i,j] ~ dinterval(-conc[i,j], -LOQ[j]) | |||
conc[i,1:C] ~ dmnorm(muind[i,], Omega[fis[i],,]) | |||
muind[i,1:C] <- mu[fis[i],1:C] #+ lenp[fis[i]]*length[i] + timep*year[i] | |||
} | |||
for(i in 1:S_nd) { | |||
for(j in 1:C_nd) { | |||
conc_nd[i,j] ~ dnorm(muind_nd[i,j], tau_nd[j]) | |||
muind_nd[i,j] <- mu_nd[fis_nd[i],j] + mulocat[locat[i]] #+ lenp[fis[i]]*length[i] + timep*year[i] | |||
} | |||
} | |||
# Priors for parameters | |||
# Time trend. Assumed a known constant because at the moment there is little time variation in data. | |||
# https://www.evira.fi/elintarvikkeet/ajankohtaista/2018/itameren-silakoissa-yha-vahemman-ymparistomyrkkyja---paastojen-rajoitukset-vaikuttavat/ | |||
# PCDDF/PCB-concentations 2001: 9 pg/g fw, 2016: 3.5 pg/g fw. (3.5/9)^(1/15)-1=-0.06102282 | |||
# timep ~ dnorm(-0.0610, 10000) | |||
# lenp[1] ~ dnorm(0.01,0.01) # length parameter for herring | |||
# lenp[2] ~ dnorm(0,10000) # length parameter for salmon: assumed zero | |||
out <- | for(i in 1:Fi) { # Fi = fish species | ||
out <- | Omega[i,1:C,1:C] ~ dwish(Omega0[1:C,1:C],S) | ||
out <- | pred[i,1:C] ~ dmnorm(mu[i,1:C], Omega[i,,]) #+lenp[i]*lenpred+timep*timepred, Omega[i,,]) # Model prediction. | ||
for(j in 1:C) { | |||
mu[i,j] ~ dnorm(0, 0.0001) # mu1[j], tau1[j]) # Congener-specific mean for fishes | |||
} | |||
} | |||
# Non-dioxins | |||
mulocat[1] <- 0 | |||
mulocat[2] ~ dnorm(0,0.001) | |||
mulocat[3] ~ dnorm(0,0.001) | |||
for(j in 1:C_nd) { | |||
tau_nd[j] ~ dgamma(0.001,0.001) | |||
for(i in 1:Fi_nd) { # Fi = fish species | |||
pred_nd[i,j] ~ dnorm(mu[i,j], tau_nd[j]) | |||
mu_nd[i,j] ~ dnorm(0, 0.0001) | |||
} | |||
} | |||
} | |||
") | |||
jags <- jags.model( | |||
mod, | |||
data = list( | |||
S = nrow(conc), | |||
S_nd = nrow(conc_nd), | |||
C = C, | |||
C_nd = ncol(conc_nd), | |||
Fi = Fi, | |||
Fi_nd = length(fisl_nd), | |||
conc = log(conc), | |||
conc_nd = log(conc_nd), | |||
locat = eu4$Locat, | |||
# length = eu3$Length-170, # Subtract average herring size | |||
# year = eu3$Year-2009, # Substract baseline year | |||
fis = match(eu3$Fish, fisl), | |||
fis_nd = match(eu4$Fish, fisl_nd), | |||
# lenpred = 233-170, | |||
# timepred = 2009-2009, | |||
Omega0 = diag(C)/100000 | |||
), | |||
n.chains = 4, | |||
n.adapt = 200 | |||
) | |||
update(jags, 1000) | |||
samps.j <- jags.samples( | |||
jags, | |||
c( | |||
'mu', # mean by fish and compound | |||
'Omega', # precision matrix by compound | |||
# 'lenp',# parameters for length | |||
# 'timep', # parameter for Year | |||
'pred', # predicted concentration for year 2009 and length 17 cm | |||
'pred_nd', | |||
'mu_nd', | |||
'tau_nd', | |||
'mulocat' | |||
), | |||
thin=thin, | |||
N*thin | |||
) | |||
dimnames(samps.j$Omega) <- list(Fish = fisl, Compound = conl, Compound2 = conl, Iter=1:N, Chain=1:4) | |||
dimnames(samps.j$mu) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4) | |||
#dimnames(samps.j$lenp) <- list(Fish = fisl, Iter = 1:N, Chain = 1:4) | |||
dimnames(samps.j$pred) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4) | |||
dimnames(samps.j$pred_nd) <- list(Fish = fisl_nd, Compound = conl_nd, Iter = 1:N, Chain = 1:4) | |||
dimnames(samps.j$mu_nd) <- list(Fish = fisl_nd, Compound = conl_nd, Iter = 1:N, Chain = 1:4) | |||
dimnames(samps.j$tau_nd) <- list(Compound = conl_nd, Iter = 1:N, Chain = 1:4) | |||
#dimnames(samps.j$timep) <- list(Dummy = "time", Iter = 1:N, Chain = 1:4) | |||
dimnames(samps.j$mulocat) <- list(Area = locl, Iter = 1:N, Chain = 1:4) | |||
##### conc_param contains expected values of the distribution parameters from the model | |||
conc_param <- list( | |||
Omega = apply(samps.j$Omega, MARGIN = 1:3, FUN = mean), | |||
# lenp = cbind( | |||
# mean = apply(samps.j$lenp, MARGIN = 1, FUN = mean), | |||
# sd = apply(samps.j$lenp, MARGIN = 1, FUN = sd) | |||
# ), | |||
mu = apply(samps.j$mu, MARGIN = 1:2, FUN = mean), | |||
# timep = cbind( | |||
# mean = apply(samps.j$timep, MARGIN = 1, FUN = mean), | |||
# sd = apply(samps.j$timep, MARGIN = 1, FUN = sd) | |||
# ) | |||
mu_nd = apply(samps.j$mu_nd, MARGIN = 1:2, FUN = mean), | |||
tau_nd = apply(samps.j$tau_nd, MARGIN = 1, FUN = mean), | |||
mulocat = apply(samps.j$mulocat, MARGIN = 1, FUN = mean) | |||
) | |||
# names(dimnames(conc_param$lenp)) <- c("Fish","Metaparam") | |||
# names(dimnames(conc_param$timep)) <- c("Dummy","Metaparam") | |||
conc_param <- melt(conc_param) | |||
colnames(conc_param)[colnames(conc_param)=="value"] <- "Result" | |||
colnames(conc_param)[colnames(conc_param)=="L1"] <- "Parameter" | |||
conc_param$Compound[conc_param$Parameter =="tau_nd"] <- conl_nd # drops out because one-dimensional | |||
conc_param$Area[conc_param$Parameter =="mulocat"] <- locl # drops out because one-dimensional | |||
conc_param <- fillna(conc_param,c("Fish","Area")) | |||
for(i in 1:ncol(conc_param)) { | |||
if("factor" %in% class(conc_param[[i]])) conc_param[[i]] <- as.character(conc_param[[i]]) | |||
} | |||
conc_param <- Ovariable("conc_param",data=conc_param) | |||
objects.store(conc_param) | |||
cat("Ovariable conc_param stored.\n") | |||
######################3 | |||
cat("Descriptive statistics:\n") | |||
# Leave only the main fish species and congeners and remove others | |||
#oprint(summary( | |||
# eu2[eu2$Compound %in% indices$Compound.PCDDF14 & eu$Fish %in% fisl , ], | |||
# marginals = c("Fish", "Compound"), # Matrix is always 'Muscle' | |||
# function_names = c("mean", "sd") | |||
#)) | |||
#tmp <- euw[euw$Compound %in% c("PCDDF","PCB","BDE153","PBB153","PFOA","PFOS","DBT","MBT","TBT"),] | |||
#ggplot(tmp, aes(x = eu2Result, colour=Fish))+stat_ecdf()+ | |||
# facet_wrap( ~ Compound, scales="free_x")+scale_x_log10() | |||
dimnames(samps.j$mulocat) | |||
scatterplotMatrix(t(exp(samps.j$pred[2,,,1])), main = paste("Predictions for several compounds for", | |||
names(samps.j$pred[,1,1,1])[2])) | |||
scatterplotMatrix(t(exp(samps.j$pred[,1,,1])), main = paste("Predictions for all fish species for", | |||
names(samps.j$pred[1,,1,1])[1])) | |||
scatterplotMatrix(t(samps.j$Omega[2,,1,,1]), main = "Omega for several compounds in Baltic herring") | |||
scatterplotMatrix(t((samps.j$pred_nd[1,,,1])), main = paste("Predictions for several compounds for", | |||
names(samps.j$pred_nd[,1,1,1])[1])) | |||
#scatterplotMatrix(t((samps.j$mulocat[,,1])), main = paste("Predictions for location average difference", | |||
# names(samps.j$pred_nd[,1,1,1])[1])) | |||
#plot(coda.samples(jags, 'Omega', N)) | |||
plot(coda.samples(jags, 'mu', N*thin, thin)) | |||
#plot(coda.samples(jags, 'lenp', N)) | |||
#plot(coda.samples(jags, 'timep', N)) | |||
plot(coda.samples(jags, 'pred', N*thin, thin)) | |||
plot(coda.samples(jags, 'mu_nd', N*thin, thin)) | |||
plot(coda.samples(jags, 'mulocat', N*thin, thin)) | |||
tst <- (coda.samples(jags, 'pred', N)) | |||
</rcode> | |||
===== Initiate conc_poll===== | |||
<rcode name="conc_poll" label="Initiate conc_poll" embed=1> | |||
#This is code Op_en3104/conc_poll on page [[EU-kalat]] | |||
library(OpasnetUtils) | |||
conc_poll <- Ovariable( | |||
"conc_poll", | |||
dependencies = data.frame( | |||
Name=c("conc_param"), #,"lengt","time"), | |||
Ident=c("Op_en3104/pollutant_bayes")#,NA,NA) | |||
), | |||
formula=function(...) { | |||
require(MASS) | |||
tmp1 <- conc_param + Ovariable(data=data.frame(Result="0-1")) # Ensures Iter # lengt + time + | |||
tmp2 <- unique(tmp1@output[setdiff( | |||
colnames(tmp1@output)[tmp1@marginal], | |||
c("Compound","Compound2","Metaparam","Parameter") | |||
)]) | |||
tmp2$Row <- 1:nrow(tmp2) | |||
tmp3 <- merge(tmp2,tmp1@output) | |||
out <- data.frame() | |||
for(i in 1:nrow(tmp2)) { | |||
############## PCDDF (with multivariate mvnorm) | |||
tmp <- tmp3[tmp3$Row == i , ] | |||
Omega <- solve(tapply( | |||
tmp$conc_paramResult[tmp$Parameter=="Omega"], | |||
tmp[tmp$Parameter=="Omega", c("Compound","Compound2")], | |||
sum # Equal to identity because only 1 row per cell. | |||
)) # Precision matrix | |||
con <- names(Omega[,1]) | |||
mu <- tmp$conc_paramResult[tmp$Parameter=="mu"][match(con,tmp$Compound[tmp$Parameter=="mu"])] # + # baseline | |||
# rnorm(1, | |||
# tmp$conc_paramResult[tmp$Parameter=="lenp" & tmp$Metaparam=="mean"][1], | |||
# tmp$conc_paramResult[tmp$Parameter=="lenp" & tmp$Metaparam=="sd"][1] | |||
# ) * (tmp$lengtResult[1]-170) + # lengt | |||
# rnorm(1, | |||
# tmp$conc_paramResult[tmp$Parameter=="timep" & tmp$Metaparam=="mean"][1], | |||
# tmp$conc_paramResult[tmp$Parameter=="timep" & tmp$Metaparam=="sd"][1] | |||
# )* (tmp$timeResult[1]-2009) # time | |||
rnd <- exp(mvrnorm(1, mu, Omega)) | |||
out <- rbind(out, merge(tmp2[i,], data.frame(Compound=con,Result=rnd))) | |||
#################### PFAS etc (with univariate norm) | |||
con <- tmp$Compound[tmp$Parameter=="mu_nd"] | |||
mu <- tmp$conc_paramResult[tmp$Parameter=="mu_nd"] | |||
tau <- tmp$conc_paramResult[tmp$Parameter=="tau_nd"][match(con,tmp$Compound[tmp$Parameter=="tau_nd"])] | |||
mulocat <- tmp$conc_paramResult[tmp$Parameter=="mulocat"] | |||
for(j in 1:length(con)) { | |||
rnd <- exp(rnorm(1 , mu[j] + mulocat , tau[j])) | |||
out <- rbind(out, | |||
data.frame(tmp2[i,],Compound = con[j],Result = rnd) | |||
) | |||
} | |||
} | |||
out$Row <- NULL | |||
# temp <- aggregate( | |||
# out["Result"], | |||
# by=out[setdiff(colnames(out), c("Result","Compound"))], | |||
# FUN=sum | |||
# ) | |||
# temp$Compound <- "TEQ" | |||
out <- Ovariable( | |||
output = out, # rbind(out, temp), | |||
marginal = colnames(out) != "Result" | |||
) | |||
return(out) | return(out) | ||
} | } | ||
) | ) | ||
objects.store( | objects.store(conc_poll) | ||
cat("Ovariable | cat("Ovariable conc_poll stored.\n") | ||
</rcode> | </rcode> | ||
Latest revision as of 09:04, 17 March 2021
This page is a study.
The page identifier is Op_en3104 |
---|
Moderator:Arja (see all) |
|
Upload data
|
EU-kalat is a study, where concentrations of PCDD/Fs, PCBs, PBDEs and heavy metals have been measured from fish
Question
The scope of EU-kalat study was to measure concentrations of persistent organic pollutants (POPs) including dioxin (PCDD/F), PCB and BDE in fish from Baltic sea and Finnish inland lakes and rivers. [1] [2] [3].
Answer

The original sample results can be acquired from Opasnet base. The study showed that levels of PCDD/Fs and PCBs depends especially on the fish species. Highest levels were on salmon and large sized herring. Levels of PCDD/Fs exceeded maximum level of 4 pg TEQ/g fw multiple times. Levels of PCDD/Fs were correlated positively with age of the fish.
Mean congener concentrations as WHO2005-TEQ in Baltic herring can be printed out with this link or by running the codel below.
Rationale
Data
Data was collected between 2009-2010. The study contains years, tissue type, fish species, and fat content for each concentration measurement. Number of observations is 285.
There is a new study EU-kalat 3, which will produce results in 2016.
Calculations
Preprocess
- Preprocess model 22.2.2017 [4]
- Objects used in Benefit-risk assessment of Baltic herring and salmon intake
- Model run 25.1.2017 [5]
- Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [6]
- Model run 23.5.2017 with adjusted ovariables euRaw, eu, euRatio [7]
- Model run 11.10.2017: Small herring and Large herring added as new species [8]
- Model rerun 15.11.2017 because the previous stored run was lost in update [9]
- Model run 21.3.2018: Small and large herring replaced by actual fish length [10]
- Model run 26.3.2018 eu2 moved here [11]
See an updated version of preprocess code for eu on Health effects of Baltic herring and salmon: a benefit-risk assessment#Code for estimating TEQ from chinese PCB7
Bayes model for dioxin concentrations
- Model run 28.2.2017 [12]
- Model run 28.2.2017 with corrected survey model [13]
- Model run 28.2.2017 with Mu estimates [14]
- Model run 1.3.2017 [15]
- Model run 23.4.2017 [16] produces list conc.param and ovariable concentration
- Model run 24.4.2017 [17]
- Model run 19.5.2017 without ovariable concentration [18] ⇤--#: . The model does not mix well, so the results should not be used for final results. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: attack)
- Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [19]
- Model run 23.5.2017 debugged [20] [21] [22]
- Model run 24.5.2017 TEQdx, TECpcb -> PCDDF, PCB [23]
- Model run 11.10.2017 with small and large herring [24] (removed in update)
- Model run 12.3.2018: bugs fixed with data used in Bayes. In addition, redundant fish species removed and Omega assumed to be the same for herring and salmon. [25]
- Model run 22.3.2018 [26] Model does not mix well. Thinning gives little help?
- Model run 25.3.2018 with conc.param as ovariable [27]
Initiate conc_pcddf for PFAS disease burden study
Initiate euw data.frame
This code is similar to preprocess but is better and includes PFAS concentrations from op_fi:PFAS-yhdisteiden tautitaakka. It produces data.frame euw that is the EU-kalat + PFAS data in wide format and, for PFAS but not EU-kalat, a sampled value for measurements below the level of quantification.
Initiate conc_param using Bayesian approach
Bayesian approach for PCDDF, PCB, OT, PFAS.
- Model run 2021-03-08 [28]
- Model run 2021-03-08 [29] with the fish needed in PFAS assessment
- Model run 2021-03-12 [30] using euw
- Model run 2021-03-13 [31] with location parameter for PFAS
- Model run 2021-03-17 [32] location parameter not plotted because problems with older R version in Opasnet.
Initiate conc_poll
Initiate conc_pcddf for Goherr
- Model run 19.5.2017 [33]
- Model run 23.5.2017 with bugs fixed [34]
- Model run 12.10.2017: TEQ calculation added [35]
- Model rerun 15.11.2017 because the previous stored run was lost in update [36]
- 12.3.2018 adjusted to match the same Omega for all fish species [37]
- 26.3.2018 includes length and time as parameters, lengt ovariable initiated here [38]
⇤--#: . These codes should be coherent with POPs in Baltic herring. --Jouni (talk) 12:14, 7 June 2017 (UTC) (type: truth; paradigms: science: attack)
See also
References
- ↑ A. Hallikainen, H. Kiviranta, P. Isosaari, T. Vartiainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan dioksiinien, furaanien, dioksiinien kaltaisten PCB-yhdisteiden ja polybromattujen difenyylieettereiden pitoisuudet. Elintarvikeviraston julkaisuja 1/2004. [1]
- ↑ E-R.Venäläinen, A. Hallikainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan raskasmetallipitoisuudet. Elintarvikeviraston julkaisuja 3/2004. [2]
- ↑ Anja Hallikainen, Riikka Airaksinen, Panu Rantakokko, Jani Koponen, Jaakko Mannio, Pekka J. Vuorinen, Timo Jääskeläinen, Hannu Kiviranta. Itämeren kalan ja muun kotimaisen kalan ympäristömyrkyt: PCDD/F-, PCB-, PBDE-, PFC- ja OT-yhdisteet. Eviran tutkimuksia 2/2011. ISSN 1797-2981 ISBN 978-952-225-083-4 [3]