Ident11Opasnet base connection<a href="http://en.opasnet.org/w/Image:Opasnet_base_connection.ANA">Wiki description</a>HP_Omistaja9. maata 2008 10:42ktluser7. Janta 2009 7:59 48,241,0,0,1,1,1,0,0,0,01,772,97,462,377,172,102,90,476,224Arial, 150,Model Op_en2676,2,2,-32762,1,Opasnet base connection.ANA100,1,1,1,1,9,2970,2100,1,0Writerjtue1. jouta 2008 10:57 48,24192,80,148,241,9,11,636,495,17100,1,1,0,1,9,2970,2100,15,0Writing codejtue18. heita 2008 10:14 48,24496,296,148,241,672,61,564,502,17100,1,1,1,1,9,2970,2100,15,0Concatenation UDFsThis library contains functions to make various instances of concatenation more convenient. Concat3 thru Concat10 are generalizations of the built-in Concat function which concatenate from 3 to 10 arrays in a single call (while the built-in Concat concatenates two arrays). ConcatRows concatenates all the rows of a single array.David Kendall & Lonnie ChrismanMon, Jan 26, 2004 8:49 AMLonnieWed, Sep 05, 2007 3:23 PM48,24456,176,168,201,0,0,1,1,1,0,0,0,01,50,200,488,454,23(A1, A2, A3: ArrayType; I1, I2, I3, J: IndexType )Concat3Concatenates three arrays, A1, A2, and A3. I1, I2, and I3 are the indexes that are joined; J is the index of the new array; J usually is the concatenation of I1, I2, and I3Index I12 := Concat(I1,I2);
Concat( Concat( A1,A2,I1,I2,I12 ), A3, I12, I3, J )88,64,148,262,56,56,986,596A1,A2,A3,I1,I2,I3,J(A1, A2, A3, A4: ArrayType; I1, I2, I3, I4, J: IndexType )Concat4Concatenates four arrays, A1, A2, A3, and A4. I1, I2, I3, and I4 are the indexes that are joined; J is the index of the new array; J usually is the concatenation of I1, I2, I3, and I4.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, J);
192,64,148,242,30,30,986,596A1,A2,A3,A4,I1,I2,I3,I4,J0(A1, A2, A3, A4, A5, A6, A7, A8, A9: ArrayType; I1, I2, I3, I4, I5, I6, I7, I8, I9, J: IndexType)Concat9Concatenates nine arrays, A1, ..., A9. I1, ..., I9 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I9.Index I12 := Concat(I1,I2);
Index I123 := Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Index I123456 := Concat(I12345, I6);
Index I1234567 := Concat(I123456, I7);
Index I12345678 := Concat(I1234567, I8);
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, I123456),
A7, I123456, I7, I1234567),
A8, I1234567, I8, I12345678),
A9, I12345678, I9, J);88,232,148,242,27,120,469,638A1,A2,A3,A4,A5,A6,A7,A8,A9,I1,I2,I3,I4,I5,I6,I7,I8,I9,J0(A1, A2, A3, A4, A5: ArrayType; I1, I2, I3, I4, I5, J: IndexType )Concat5Concatenates five arrays, A1, ..., A5. I1, ..., I5 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I5.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, J);88,120,148,242,160,160,986,596A1,A2,A3,A4,A5,I1,I2,I3,I4,I5,J(A1, A2, A3, A4, A5, A6: ArrayType; I1, I2, I3, I4, I5, I6, J: IndexType )Concat6Concatenates six arrays, A1, ..., A6. I1, ..., I6 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I6.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, J);192,120,148,242,644,94,602,712A1,A2,A3,A4,A5,A6,I1,I2,I3,I4,I5,I6,J0(A1, A2, A3, A4, A5, A6, A7: ArrayType; I1, I2, I3, I4, I5, I6, I7, J: IndexType )Concat7Concatenates seven arrays, A1, ..., A7. I1, ..., I7 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I7.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Index I123456 := Concat(I12345, I6);
Concat(
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, I123456),
A7, I123456, I7, J);88,176,148,242,580,98,551,565A1,A2,A3,A4,A5,A6,A7,I1,I2,I3,I4,I5,I6,I7,J(A1, A2, A3, A4, A5, A6, A7, A8: ArrayType; I1, I2, I3, I4, I5, I6, I7, I8, J: IndexType )Concat8Concatenates eight arrays, A1, ..., A8. I1, ..., I8 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I8.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Index I123456 := Concat(I12345, I6);
Index I1234567 := Concat(I123456, I7);
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, I123456),
A7, I123456, I7, I1234567),
A8, I1234567, I8, J);192,176,148,242,12,98,561,737A1,A2,A3,A4,A5,A6,A7,A8,I1,I2,I3,I4,I5,I6,I7,I8,J0(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10: ArrayType; I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, J: IndexType)Concat10Concatenates ten arrays, A1, ..., A10. I1, ..., I10 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I10.Index I12 := Concat(I1,I2);
Index I123 := Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Index I123456 := Concat(I12345, I6);
Index I1234567 := Concat(I123456, I7);
Index I12345678 := Concat(I1234567, I8);
Index I123456789 := Concat(I12345678, I9);
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, I123456),
A7, I123456, I7, I1234567),
A8, I1234567, I8, I12345678),
A9, I12345678, I9, I123456789),
A10, I123456789, I10, J);192,232,148,242,542,93,632,744A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,J0(A : ArrayType ; RowIndex,ColIndex,ResultIndex : IndexType)ConcatRows (A,I,J,K)Takes an array, A indexed by RowIndex & ColIndex, and concatenates each row, henceforth flattening the array by one dimension. The result is indexed by ResultIndex, which must be an index with size(RowIndex) * size(ColIndex) elements.index L := [ identifier of RowIndex, identifier of ColIndex, "val"];
slice(Mdarraytotable(A,ResultIndex,L),L,3)320,64,164,242,499,85,478,348A,RowIndex,ColIndex,ResultIndexODBC LibraryLonnieThu, Sep 11, 1997 2:15 PMLonnieTue, Feb 05, 2008 10:03 AM48,24440,128,152,201,1,1,1,1,1,0,0,0,01,20,272,499,462,17Arial, 13(A:ArrayType;I:IndexType;L:IndexType;row:IndexType;dbTableName)InsertRecSqlGenerates the SQL "INSERT INTO" statement for one line of table A. A is a 2-D table indexed by rows I and columns L. L's domain serves as the column names in the database table. dbTableName is the name of the table in the database. The result begins with two semi-colons, since it will be used with an SQL statement preceeding it.
29.8.2008 Jouni Tuomisto
I added the parameter IGNORE because it ignores rows that would cause duplicate-key violations. This way, there is no need to check for e.g. existing locations of new indices.
6.1.2009 Jouni Tuomisto
I changed the A[I=row] to A[@I=@row] because the original function does not work correctly, if there are non-unique rows in the index.(';;INSERT IGNORE INTO ' & dbTableName & '(' & JoinText(L,L,',') & ') VALUES (' & Vallist(A[@I=@row],L)) & ') '184,32,152,242,591,203,487,469A,I,L,row,dbTableName(V:ArrayType;I:IndexType)ValListTakes a list of values, and returns a string which the concatenation of each value, separated by commas, and with each value quoted.JoinText( '''' & V & '''', I, ',')72,32,052,242,642,360,476,224V,I1,F,4,14,0,0(Tabl:ArrayType;RowIndex:IndexType;LabelIndex:IndexType;dbTableName)WriteTableSql(Table,Rows,Labels,dbTableName)Returns the SQL that will write the table to the database table.
This can be used as the second argument to DBWrite.
This SQL statement replaces the entire contents of an existing table with the new data.'DELETE FROM '& Dbtablename & JoinText(Insertrecsql(Tabl, Rowindex, Labelindex, Rowindex, Dbtablename),RowIndex)328,32,188,242,728,341,510,476Tabl,RowIndex,LabelIndex,dbTableName(Tabl:ArrayType;RowIndex:IndexType;LabelIndex:IndexType;dbTableName)AppendTableSql(Table,Rows,Labels,dbTableName)Returns the SQL that will write the table to the database table.
This can be used as the second argument to DBWrite.
This SQL statement replaces the entire contents of an existing table with the new data.JoinText(Insertrecsql(Tabl, Rowindex, Labelindex, Rowindex, Dbtablename),RowIndex)328,88,188,242,559,127,510,476Tabl,RowIndex,LabelIndex,dbTableName[]Write LocMakes a table to be written to the Loc table.index j:= ['id','Obj_id_i','Location','Description'];
Locations2[.j=j]320,200,148,162,711,325,476,2242,513,49,515,278,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0100,1,1,1,1,9,2970,2100,15,0[](table:texttype)CardBrings the largest id number from the table defined in the parameter.index i:= DBquery(odbc,'
SELECT MAX(id) AS id
FROM '&table&'
');
index j:= dblabels(i);
max(max(DBTable(i, j ),i),j)440,72,148,122,102,90,476,33139325,65535,39321tableTablesList of such tables in Opasnet Base that are being written to by this module.['Obj','Res','Loc','Locres','Sett','Item','Sam']200,64,148,132,15,594,158,227,0,MIDM['Obj','Res','Loc','Locres','Sett','Item','Sam']CardinalsThe largest id values for the selected Opasnet Base tables. The table is updated by pressing the R_cardinals button.Table(Table1)(
183,2075,688,3208,44,131,873.378K
)200,32,148,242,634,394,476,3322,193,270,416,303,0,MIDM2,472,313,416,303,0,MIDM39325,65535,393212,I,4,2,0,0,4,0,$,0,"ABBREV",0Inp locresMakes a list of all locations in all results in all variables. The list is as long as is needed for the Locres table. A subset is taken then for the Res table.
1) Initialises local variables, and slices variables from Object1.
2)-4) Does the process for each variable one at a time.
2) Only the deterministic information about variables are considered (therefore mean). Makes a 2D table of the locres info.
3) Makes a table with fields required by the Locres and Res tables.
4) Reduces one dimension by expanding the length from the length of Res to that of Locres.
5) Makes i the row index.var output=0;
var e:= Cardinals[table1='Res'];
var f:= Cardinals[table1='Locres'];
var o:= if Objects1[.j='Typ_id'] = 1 or Objects1[.j='Typ_id'] = 10 then 1 else 0;
index j:= ['id', 'Location', 'Res_id', 'Loc_id', 'Vident', 'Obj_id_v', 'Obj_id_r', 'Mean', 'N'];
index k:= subset(o);
o:= objects1[Object_all=k];
var x:= 1;
while x<= size(k) do (
var c:= slice(o,k,x);
var a:= mean(sample(evaluate(c[.j='identifier'])));
index h:= indexnames(a);
index L:= concat(h,['Value']);
index res_id:= (1..size(a))+e;
index locres_id= (1..size(a)*size(h))+f;
e:= e+size(res_id);
f:= f+size(locres_id);
a:= mdarraytotable(a,res_id,L);
var mean1:= a[L='Value'];
a:= a[L=h]&'';
var g:= if Loc.j='Obj_id_i' then Loc&'+'&Loc[.j='Location'] else Loc;
var p:= h;
a:= array(j,[
locres_id,
a,
res_id,
findid(findid((Ident of p), Obj, 'Ident')&'+'&a, g, 'Obj_id_i'),
c[.j='Ident'],
findid(c[.j='Ident'], Obj, 'Ident'),
findid(objects1[.j='Ident', Object_all='Run'], Obj, 'Ident'),
mean1,
if c[.j='Probabilistic?']=0 then 0 else samplesize]);
a:= concatrows(a,h,res_id,locres_id);
output:= if x= 1 then a else for y:= j do (
concat(output[j=y],a[j=y]) );
x:= x+1);
index i:= 1..size(output)/size(j);
for y:= j do (slice(output[j=y],i))200,248,148,162,70,16,526,8012,34,59,777,552,0,MIDM[Formnode Inp_locres1][Sys_localindex('J'),Sys_localindex('I')]2,I,4,2,0,0,4,0,$,0,"ABBREV",0[][Undefined][Sys_localindex('H'),1,Sys_localindex('RES_ID'),1,Sys_localindex('LOCRES_ID'),1,Sys_localindex('J'),1](in, table; cond:texttype)FindidThis function gets an id from a table.
in: the property for which the id is needed. In MUST be unique in cond.
table: the table from where the id is brought. The table MUST have .j as the column index, .i as the row index, and a column named 'id'.
cond: the name of the field that is compared with in. Cond must be text.var id:= if (in&' ') = (table[.j=cond]&' ') then table[.j='id'] else 0;
sum(id, table.i)&''440,48,148,122,636,101,494,398in,table,condWrite LocresSlices fields that are needed in the Locres table from Inp_locres.index j:= ['id','Res_id','Loc_id'];
inp_locres[.j=j]320,248,152,162,790,83,476,2242,632,155,416,303,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')][]Write ResSlices the fields that are needed in the Res table. Removes duplicate rows.index j:= ['id','Obj_id_v','Obj_id_r','Mean','N'];
var a:= inp_locres[.j=j];
a:= if j='id' then inp_locres[.j='Res_id'] else a;
index i:= unique(a,a.i);
a[.i=i]320,280,148,162,807,62,476,2242,723,178,416,303,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')][]WikisNames of different wikis used.Table(Self)(
'Op_en','Op_fi','Heande','En','Fi','Erac','Beneris','Intarese','Piltti','Kantiva','Bioher','Heimtsa')[1,2,3,4,5,8,9,10,11,13,14,15]56,64,148,1265535,52427,65534[Object2,Self]Object typesTypes of different objects that may exist in Analytica or Opasnet Base. Types that have the same number are treated equally in these systems.Table(Self)(
'Variable','Dimension','Method','Model','Class','Index','Nugget','Encyclopedia article','Run','Chance','Decision','Objective','Constant','Determ','Module','Library','Form')[1,2,3,4,5,6,7,8,9,1,10,1,1,1,4,4,4]56,32,148,202,674,34,416,606,0,MIDM2,193,235,416,390,0,MIDM65535,52427,65534Write SettMakes a list of sets for the Sett table. There are three major kinds of sets: Indices belonging to an assessment, variables belonging to an assessment, and variables belonging to a run. Indices belonging to a dimension are NOT created with this node.index i:= ['Assessment','Assessment','Run'];
index j:= ['id','Obj_id','Sty_id'];
array(j,[
(Cardinals[table1='Sett']+@i)&'',
findid(Objects1[Object_all=i, .j='Ident'], Obj, 'Ident'),
array(i,[3,4,9])])320,64,148,162,740,132,495,4442,661,16,416,340,0,MIDM[Formnode Write_sett1]65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0100,1,1,1,1,9,2970,2100,15,0[]Write ObjSelects relevant information for the Obj table from Objects1 node.index j:= ['id','Ident','Name','Unit','Typ_id','Page','Wik_id'];
index i:= 1..size(Object_all);
Objects1[.j=j, @Object_all=@i]320,32,148,162,289,70,909,492,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[][]Write ItemMakes a list of items of sets into the Item table. This node does NOT handle indices of a dimensions, but they must be described elsewhere. For types of sets, see Write_sett.index j:= ['id','Sett_id','Obj_id','Fail'];
index k:= types(1);
index L:= types(6);
var c:= if sett.j='Obj_id' then sett&'+'&sett[.j='Sty_id'] else sett;
c:= findid(write_sett[.j='Obj_id']&'+'&write_sett[.j='Sty_id'], c, 'Obj_id');
var a:= array(j,k, [0, slice(c,1), k, 0]);
var b:= array(j,L,[0, slice(c,2), L, 0]);
index m:= 1..(size(k)+size(L));
a:= concat(a,b,k,l,m);
b:= array(j,k, [0, slice(c,3), k, 0]);
index i:= 1..(size(m)+size(k));
a:= concat(a,b,m,k,i);
if j='id' then cardinals[table1='Item']+@i else a;
320,104,148,162,80,84,476,4732,921,13,345,638,0,MIDM[Formnode Write_item2]65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0100,1,1,1,1,9,2970,2100,15,0[][Self,1,Sys_localindex('J'),1,Sys_localindex('K'),1]Write DescrIf the result is not a number, then the actual result text can be written into the Description field of the Descr table. Makes a list of text values to be written into the Descr table.index j:= ['id','Description'];
index i:= subset(sample1[.j='Description']);
sample1[.j=j, .i=i]320,320,148,162,674,46,476,2242,670,328,416,303,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,I,4,2,0,0,4,0,$,0,"ABBREV",0[]Write InfMakes a list of objects that contains some additional information to be written into the Inf table.index j:= ['id','Begin','End','Who','Url'];
var a:= Objects1;
var b:= findid(a[.j='Ident'], Obj, 'Ident');
a:= a[.j=j];
a:= if a = null or j='id' or a='' then 0 else a;
a:= if sum(a,j) = 0 then 0 else 1;
index i:= subset(a);
a:= Objects1[Object_all=i, .j=j];
a:= if j='id' then b[Object_all=i] else a;
if a=null or a=0 then '' else a320,136,148,162,94,102,476,3402,55,45,483,478,0,MIDM[Formnode Write_inf1]65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[](type)TypesFinds the objects that are of the object type "type" (the only parameter of this function). Based on the information in Objects1.var a:= if Objects1[.j='Typ_id']=type then 1 else 0;
Objects1[Object_all=subset(a),.j='id']440,24,148,122,551,191,476,344typeRun infoAdditional information about the run and the assessment.Table(Self,Info)(
'Op_en1896','Benefit-risk assessment of farmed salmon','Jouni','2004-01-09',
'Op_eni2695','Testrun 2','Jouni',0
)['Assessment','Run']56,104,148,132,576,173,476,3922,339,445,416,303,0,MIDM2,664,117,416,303,0,MIDM[Formnode Run_info1]52425,39321,65535[Self,Info][Self,Info]Op_en2694ObjectsMakes a table about object information.
1) Finds information for other parameters based on objects.
2) Adds info from nodes Run_info, Probabilistic_, and Index_info.
3) Makes the final adjustements based on information described above.
There is no need to search for existing objects, because the Ident is unique. Thus, all attempts of duplicate additions just are ignored.
Null values are ignored in the write procedure. This causes mistmatch between column and values. Therefore, null is replaced by ''.var a:= Object_all;
var d:= findintext(Object_types,Class of a);
d:= sum(if d=0 then 0 else indexvalue(object_types),object_types);
var f:= {findid(Object4,Obj,'Ident');
f:= if f>0 then f else} Cardinals[table1='Obj']+@Object_all;
Index j:= ['identifier', 'id','Ident','Name','Unit','Typ_id','Page','Wik_id', 'Who','Begin','Url','Probabilistic?','Description node'];
a:= array(j,[
Object_all,
f,
Ident of a,
Title of a,
Units of a,
if Object_all = 'Run' then 9 else d,
'', '', '', '', 0, 0, 0]);
var b:= if j='Probabilistic?' then probabilistic_[objects_excl_indices=Object_all] else null;
a:= if b=null then a else b;
b:= index_info[Add_info=j, Indices=Object_all];
a:= if b=null then a else b;
b:= run_info[info=j, run_info=Object_all];
b:= if j= 'Begin' and Object_all='Run' and b=0 then datepart(today(),'Y')&'-'&datepart(today(),'M')&'-'&datepart(today(),'D') else b;
a:= if b=null then a else b;
b:= if Object_all ='Run' and j='Name' then a&': Analytica '&Analyticaedition&', ('&Analyticaplatform&'), Version: '&Analyticaversion&', Samplesize: '&samplesize else null;
a:= if b=null then a else b;
b:= findintext(wikis,a[j='Ident']);
b:= if b=0 then 0 else b+textlength(Wikis);
var c:= sum(if b=0 then 0 else @wikis,wikis);
b:= sum(b,wikis);
b:= if b = 0 then 0 else selecttext(a[j='Ident'],b);
a:= if j='Page' then b else a;
a:= if j='Wik_id' then c else a
if a = null then '' else a
200,136,148,162,21,24,581,7222,41,312,1217,247,0,MIDM[Formnode Objects][Sys_localindex('J'),Object_all]2,I,4,2,0,0,4,0,$,0,"ABBREV",0[0,1,1,0]['','','','','','','','','','','','','','','','','','','','','','',''][Indices,6,Add_info,2,Object_all,1,Sys_localindex('IOBJ'),1]IndicesThis makes a list of all indices (including decision nodes) that are used by the variables in Object1.index a:= indexnames(evaluate(Objects_excl_indices));
a:= if a='Object1' or a='Objects_excl_indices' then 0 else 1;
subset(a)
56,272,148,132,102,90,476,4642,32,349,416,303,0,MIDM[Objects_excl_indices]['Pollutant1','Salmon1','H1899','Cause_of_death3','H1898','Year3']Index infoAdditional information for each index and decision node. Description node is the name of a node containing information about the locations of the index. It must be indexed by the index.Table(Add_info,Indices)(
0,0,0,0,0,0
)56,216,148,202,140,217,476,2242,605,351,664,303,0,MIDM2,506,220,684,303,0,MIDM[Formnode Index_info1]52425,39321,65535[Add_info,Indices][Add_info,Indices]Add infoAdditional pieces of information about indices. Currently, the only piece is a description node.['Description node']56,248,148,12['Description node']Probabilistic?Contains 1 for all variables that are stored as samples from probability distributions, and 0 for deterministic variables.Table(Objects_excl_indices)(
0,0,1,1,1,1,1,1,0,1,1,1,0,0,1)56,168,148,222,197,26,416,371,0,MIDM2,17,23,416,364,0,MIDM[Formnode Probabilistic_1]52425,39321,65535Info['Ident','Name','Who','Begin']56,128,148,12['Ident','Name','Who','Begin']Object allList of variables, indices, assessment, and run to be stored into the Opasnet Base.concat(concat(objects_excl_indices,Indices),indexvalue(Run_info))&''200,160,148,131,1,1,1,1,1,0,0,0,02,49,109,558,5272,200,210,773,264,0,MIDM[Self,Info]['H1898','H1899','H1900','H1901','H1902','H1903','H1904','H1905','H1906','H1907','H1908','H1909','H1910','H1911','H1912','Pollutant1','Salmon1','H1899','Cause_of_death3','H1898']SampleThe usage of local variables: a: the temporary variable that is being edited. e: cardinal of the Res table. f: cardinal of the Sam table. j: output column headings. i: output row numbers.
1) Several local variables are initiated. Variables and Decisions are included.
2)-5) The process is done for each variable one at a time (this is indexed by x).
3) Several within-loop local variables are initiated.
4) The variable is given index runn which is equal to run if probabilistic and [0] if not. The array is flattened first to 2-D, the value only is kept.
5) Variables are concatenated to each other.
6) Index i is made the index of the implicit index.
NOTE! This node MUST be formatted to Integer, otherwise Sam_id will be stored in a wrong format.var output=0;
var e:= Cardinals[table1='Res'];
var f:= Cardinals[table1='Sam'];
index j:= ['id','Res_id','Sample','Result','Description'];
var o:= if Objects1[.j='Typ_id'] = 1 or Objects1[.j='Typ_id'] = 10 then 1 else 0;
index k:= subset(o);
o:= objects1[Object_all=k];
var x:= 1;
while x<= size(k) do (
var c:= slice(o,k,x);
var a:= c[.j='identifier'];
a:= sample(evaluate(a));
index h:= indexnames(max(a,run));
index L:= concat(h,['Value']);
index runn:= if c[.j='Probabilistic?']=1 then copyindex(run) else [0];
index res_id:= (1..size(max(a,run)))+e;
index sam_id:= (1..size(res_id)*size(runn))+f;
e:= e+size(res_id);
f:= f+size(sam_id);
a:= if c[.j='Probabilistic?']=1 then a[run=runn] else (if runn=0 then a else a);
a:= mdarraytotable(a,res_id,L)[.L='Value'];
a:= array(j,[0, res_id&'', runn&'', (if istext(a) then 0 else a) , (if istext(a) then a else 0)]);
a:= concatrows(a,res_id,runn,sam_id);
a:= if j='id' then sam_id&'' else a;
output:= if x= 1 then a else for y:= j do (
concat(output[j=y],a[j=y]) );
x:= x+1);
index i:= 1..size(output)/size(j);
for y:= j do (slice(output[j=y],i))200,320,148,162,19,11,585,7722,133,242,753,337,0,MIDM[Formnode Sample2][Sys_localindex('J'),Sys_localindex('I')]2,I,4,2,0,0,4,0,$,0,"ABBREV",0LocationsMakes a list of all locations of all indices used in variables listed in Object1.
1) Initialises local variables.
2) Takes one index at a time, calculates the values and concatenates them to the previous values.
3) All parameters are lumped into a single array, with some fields calculated based on others.var a:= if objects1[.j='Typ_id']= 6 or objects1[.j='Typ_id']= 10 then 1 else 0;
index k:= subset(a);
a:= objects1[Object_all=k];
var b:= [0];
var c:= [0];
var e:= [0];
var f:= [0];
var x:= 1;
while x<=size(k) do (
var d:= evaluate(slice(k,x));
b:= concat(b,d);
c:= concat(c,(if d=0 then slice(k,x) else slice(k,x)));
e:= concat(e,1..size(d));
var g:= evaluate(a[@k=x, .j='Description node']);
g:= {if size(g) = size(d) then g else} (if d=0 then g else g);
f:= concat(f, g);
x:= x+1);
index i:= 1..size(b)-1;
c:= slice(c,i+1);
index j:= ['id','Obj_id_i', 'Ind_identifier', 'Location', 'Roww', 'Description'];
array(j,[cardinals[table1='Loc']+i, findid(Ident of c,Obj,'Ident'), c, slice(b,i+1)&'', slice(e,i+1), slice(f,i+1)])200,200,148,162,40,23,521,6282,521,153,727,401,0,MIDM[Formnode Locations1][Sys_localindex('J'),Sys_localindex('I')]['','','','','','','','','',''][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]W Samindex j:= ['id','Res_id','Descr_id','Sample','Result'];
var write_sam:= sample1[.j=j];
write_sam:= if write_sam=null then '0' else write_sam;
{dbwrite(odbc_write, appendtablesql(write_sam,write_sam.i, write_sam.j,'Sam '))}320,352,148,122,102,90,476,3332,642,255,552,303,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[][](var, table)Writedbwrite(odbc_write, appendtablesql(var,var.i, var.j, table&' '))440,96,148,122,687,61,476,224var,tableThis module saves model results into the Opasnet Base. You need a password for that. Note that the necessary variable, index, dimension, and run information will be asked. You must fill in all tables before the process is completed.472,76,-1136,68Note! You can insert several variables at the same time. Each variable MUST have at least one index.472,176,-1136,32Te11Fill in the data below in this order.168,228,-5160,2201,0,0,1,0,1,0,,0,Username0156,44,1140,121,0,0,1,0,0,0,110,0,152425,39321,65535UsernamePassword0156,68,1140,121,0,0,1,0,0,0,110,0,152425,39321,65535PasswordObject0156,93,1140,131,0,0,1,0,0,0,72,0,152425,39321,65535Objects_excl_indicesObjects excl indices['H1898','H1899','H1900','H1901','H1902','H1903','H1904','H1905','H1906','H1907','H1908','H1909','H1910','H1911','H1912']496,240,148,242,958,152,321,4812,328,338,416,361,0,MIDM[Formnode Object2]52425,39321,65535['H1898','H1899','H1900','H1901','H1902','H1903','H1904','H1905','H1906','H1907','H1908','H1909','H1910','H1911','H1912']Run info0156,164,1140,121,0,0,1,0,0,0,72,0,152425,39321,65535Run_infoCheck all the nodes before running buttons (from top to bottom)!60,274,-144,74Inp locres1200,381,196,131,0,0,1,0,0,0,72,0,1Inp_locresWrite Sett1200,285,196,131,0,0,1,0,0,0,72,0,165535,45873,39321Write_settWrite Item1200,357,196,131,0,0,1,0,0,0,72,0,165535,45873,39321Write_itemWrite Inf1200,261,196,131,0,0,1,0,0,0,72,0,165535,45873,39321Write_infObjects1200,212,196,121,0,0,1,0,0,0,72,0,1Objects1Sample1200,404,196,121,0,0,1,0,0,0,72,0,1Sample1Locations1200,309,196,131,0,0,1,0,0,0,72,0,1Locations2Dependency graphktluser29. Decta 2008 21:51 48,24496,352,148,241,279,39,902,527,1792,1,1,0,2,9,2970,2100,15,0Cardinals:
all tables192,56,148,2439325,65535,39321Objects:
identifier
id
ident
Name
Unit
Typ_id
etcCardinals__all_table320,120,148,76Obj:
id
Ident
Name
Unit
Typ_id
etcObjects__192,184,148,6765535,45873,39321Sett:
id
Obj_id
Typ_idObj__id_ident_name_u192,328,148,4065535,45873,39321Item:
id
Sett_id
Obj_id
FailSett__id_obj_id_typ_56,329,148,4965535,45873,39321Inf:
id
Begin
End
Who
UrlObj__id_ident_name_u56,186,148,5865535,45873,39321Loc:
id
Obj_id_d
Location
DescriptionObj__id_ident_name_u320,336,148,5265535,45873,39321Inp_locres:
Locres_id
Location
Res_id
Roww_id
Vident
Obj_id_v
Obj_id_r
Mean
NLoc__id_obj_id_d_loc456,336,148,92Locres:
id
Res_id
Roww_idInp_locres__locres_i592,424,148,4065535,45873,39321Res:
id
Obj_id_v
Obj_id_r
Mean
NInp_locres__locres_i592,312,148,5865535,45873,39321Sam:
id
Res_id
Sample
ResultSample__id_res_id_sa592,120,148,5265535,45873,39321Descr:
id
DescrSample__id_res_id_sa592,216,148,3165535,45873,39321The arrows only show sequential dependencies. This means that e.g. Cardinals is a parent to many other nodes as well, but the critical values in Cardinals only change before Objects is defined, and there is no need to update Cardinals during the writing process.
Orange nodes are actual Tables in Opasnet Base. Green nodes are SQL queries from Opasnet Base. Blue nodes are computed in Analytica.752,168,-1112,152Sample:
id
Res_id
Sample
Result
DescrObjects__456,121,148,58R Objects192,176,-156,801,0,0,1,0,1,0,,0,R Structure256,332,-1120,681,0,0,1,0,1,0,,0,R Cardinals192,48,-156,401,0,0,1,0,1,0,,0,Index info0156,140,1140,121,0,0,1,0,0,0,72,0,152425,39321,65535Index_infoProbabilistic?0156,116,1140,121,0,0,1,0,0,0,72,0,152425,39321,65535Probabilistic_Readerktluser3. Augta 2008 18:31jtue9. lokta 2008 14:01 48,24192,32,148,241,1,1,1,1,1,0,0,0,01,792,124,477,366,17Arial, 15(vident:text, runident:optional)Read meanReads the mean data about the vident variable from the Opasnet Base. Uses the runident run if specified; otherwise uses the newest run of that variable.
PARAMETERS:
* Vident: the Ident of the variable in the Opasnet Base.
* Runident: the Ident of the run from which the results will be brought. If omitted, the newest result will be brought.if isnotspecified(runident) then runident:= identfind(newestrun(vident));
var a:= '
SELECT Var.Ident as Vident, Var.Name as Vname, Var.Unit as Vunit, Res.id, Ind.Ident as Iident, Location, Mean, N, Run.Name as Rname, Run.ident AS Runident
FROM Obj as Var, Res, Locres, Loc, Obj as Ind, Obj as Run
WHERE Res.Obj_id_r = Run.id
AND Res.Obj_id_v = Var.id
AND Locres.Res_id = Res.id
AND Locres.Loc_id = Loc.id
AND Loc.Obj_id_i = Ind.id
AND Var.Ident = '&chr(39)&vident&chr(39)&'
AND Run.ident = '&chr(39)&runident&chr(39)
;
index i:= DBquery(Odbc,a);
index j:= dblabels(i);
dbtable(i,j)56,88,148,122,585,25,516,58939325,65535,39321vident,runident(vident:text)NewestrunThis function checks for the newest result (according to run_id) of the variable. The function is used if the user does not define the run_id as an optional parameter in functions Read_mean and Read_sample.
PARAMETERS:
* Vident: the Ident of the variable in the Opasnet Base.index i:= DBquery(Odbc,'
SELECT Obj_id_r
FROM Res, Obj as Var
WHERE Var.id = Res.Obj_id_v
AND Var.Ident = "'&vident&'"
GROUP BY Var.id, Obj_id_r
');
index j:= dblabels(i);
max(max(dbtable(i,j),i),j)56,16,148,122,678,59,476,56639325,65535,39321vident(vident:text, runident:optional)Read sampleReads the sample data about the vident variable from the Opasnet Base. Uses the runident run if specified; otherwise uses the newest run of that variable.
PARAMETERS:
* Vident: the name of the variable in the Opasnet Base.
* Runident: the Ident of the run from which the results will be brought. If omitted, the newest result will be brought.if isnotspecified(runident) then runident:= identfind(newestrun(vident));
var a:= '
SELECT Temp.id, Sample, Result, Description
FROM
(SELECT Res.id, Sam.id AS Sam_id, Sample, Result, Obj_id_r
FROM Res, Sam, Obj AS Run, Obj AS Var
WHERE Var.Ident = '&chr(39)&vident&chr(39)&'
AND Res.Obj_id_v = Var.id
AND Res.Obj_id_r = Run.id
AND Run.Ident = '&chr(39)&Runident&chr(39)&'
AND Sam.Res_id = Res.id) AS Temp
LEFT JOIN Descr ON
Temp.Sam_id = Descr.id
';
index i:= DBquery(Odbc,a);
index j:= dblabels(i);
dbtable(i,j)56,120,148,222,700,47,516,61239325,65535,39321vident,runidentEnter variable Ident'Op_en1912'168,88,148,31[Formnode Enter_variable1]52425,39321,65535Enter variable0288,24,1176,131,0,0,1,0,0,0,170,0,152425,39321,65535Enter_variableNewest runnewestrun(Enter_variable)288,64,148,12Var inforead_mean(Enter_variable)288,112,148,122,56,66,1205,308,0,MIDM[Sys_localindex('J'),Sys_localindex('I')](a,inde)MakeindThe input table a must have a structure that is also used as input for MDTable function. The function removes one column with location information and makes a dimension (index) with the locations in the column. Inde is the (local) index that will be added. Note that unlike MDTable function, this can use local indices in the output.if size(a.m)= 1 then a else (
a:= if inde = a[@.m=1] then a else 0;
index m:= slice(a.m,(2..size(a.m)));
a:= a[.m=m])56,176,148,122,283,62,476,224a,inde(a)Get res.idMakes a multi-dimensional array with the same structure as the original variable that was stored into the Opasnet Base. However, the indices do not have original names. They are named In1, In2,... The contents of the array are the res.ids of the variable. The input parameter must be a 2D table with the structure that comes from the Read_mean function.
1) Slices the necessary columns from the input table and converts that to a 2D table that has the same structure as is used for input to the function MDTable.
2) Defines the local indices (up to 10), and changes a location column to a dimension one at a time until all columns have been changed.index k:= ['Iident','Location','id'];
a:= a[.j=k];
index L:= a[@k=1]&'+'&a[@k=3];
index m:= concat(a[.i=unique(a[@k=1],a.i), @k=1],['Result']);
index n:= a[.i=unique(a[@k=3],a.i), @k=3];
a:= a[@.i=@L];
a:= a[L=m&'+'&n, @k=2];
a:= if m='Result' then n else a;
index in1:= a[n=unique(a[@m=1],n),@m=1];
index in2:= a[n=unique(a[@m=2],n),@m=2];
index in3:= a[n=unique(a[@m=3],n),@m=3];
index In4:= a[n=unique(a[@m=4],n),@m=4];
index In5:= a[n=unique(a[@m=5],n),@m=5];
index in6:= a[n=unique(a[@m=6],n),@m=6];
index in7:= a[n=unique(a[@m=7],n),@m=7];
index in8:= a[n=unique(a[@m=8],n),@m=8];
index in9:= a[n=unique(a[@m=9],n),@m=9];
index in10:= a[n=unique(a[@m=10],n),@m=10];
a:= makeind(a, in1);
a:= makeind(a, in2);
a:= makeind(a, in3);
a:= makeind(a, in4);
a:= makeind(a, in5);
a:= makeind(a, in6);
a:= makeind(a, in7);
a:= makeind(a, in8);
a:= makeind(a, in9);
a:= makeind(a, in10);
sum(sum(a,a.m),a.n)56,152,148,122,669,44,476,545aVar meanget_mean(Enter_variable)288,136,148,122,547,35,416,622,0,MIDM[Sys_localindex('IN2'),Sys_localindex('IN3')][Sys_localindex('IN1'),1,Sys_localindex('IN4'),1,Sys_localindex('IN5'),1,Sys_localindex('IN3'),1,Sys_localindex('IN2'),1](vident:text, runident:optional)Get meanGives the mean result of a (multidimensional) variable stored in the Opasnet Base. The procedure is simple because it utilises the variable structure (with res_ids) derived by the get_res_id function.var a:= {testmean} read_mean(vident, runident);
index o:= a[.j='id'];
var output:= a[@.i=@o, .j='Mean'];
a:= get_res_id(a);
output[o=a]56,200,148,122,665,82,476,428vident,runident(vident:text, runident:optional)Get sampleGives the sample result of a (multidimensional) variable stored in the Opasnet Base. The procedure is simple because it utilises the variable structure (with res_ids) derived by the get_res_id function.
Note that if the Analytica samplesize is smaller than the samplesize stored in the Opasnet Base, the extra samples will be discarded. If the samplesize is larger, the remaining rows will be null.
1) Brings the data into the right structure.
2) Chooses whether the actual result is numerical (in the Result column) or text (in the Description column).var a:= read_sample(vident, runident);
var b:= get_res_id(read_mean(vident,runident));
index k:= a[.j='id']&'+'&a[.j='Sample'];
index runn:= min(a[.j='Sample'])..max(a[.j='Sample']);
a:= a[@.i=@k];
a:= a[k=b&'+'&runn];
a:= if max(runn)=0 then a[@runn=1] else a[@runn=@run];
var c:= if a[.j='Description']='' then 0 else 1;
c:= sum(sum(sum(sum(sum(sum(sum(sum(sum(sum(c))))))))));
if c=0 then a[.j='Result'] else a[.j='Description']56,224,148,122,641,28,476,556vident,runidentVar sampleget_sample(Enter_variable)288,160,148,122,226,324,416,303,0,MEAN[Sys_localindex('IN5'),Sys_localindex('IN3')][Sys_localindex('IN1'),1,Sys_localindex('IN2'),1,Sys_localindex('IN4'),1,Sys_localindex('IN3'),1,Sys_localindex('J'),1,Sys_localindex('IN5'),1](runid)IdentfindFinds the Ident for the run (or another object) that has the id runid.index i:= DBquery(Odbc,'
SELECT ident
FROM Obj
WHERE Obj.id = "'&runid&'"
');
index j:= dblabels(i);
var a:= dbtable(i,j);
a[@i=1, @j=1]56,64,148,122,732,65,516,58939325,65535,39321runidVar run infoDescribes the runs of the defined variable. This should be made a function.var_run_info(Enter_variable)288,88,148,122,136,146,1111,285,0,MIDM[Sys_localindex('J'),Sys_localindex('I')](vident:text)Var run infoThis function checks for the newest result (according to run_id) of the variable. The function is used if the user does not define the run_id as an optional parameter in functions Read_mean and Read_sample.
PARAMETERS:
* Vident: the Ident of the variable in the Opasnet Base.var a:= '
SELECT Var.Ident, Var.Name, Var.Unit, Run.Ident AS Runident, Inf.Begin, Inf.Who, Run.Name as Method
FROM Obj as Var, Obj as Run, Res, Inf
WHERE Var.Ident = '&chr(39)&vident&chr(39)&'
AND Var.id = Res.Obj_id_v
AND Run.id = Res.Obj_id_r
AND Run.id = Inf.id
GROUP BY Var.id, Run.id
';
index i:= DBquery(Odbc,a);
index j:= dblabels(i);
dbtable(i,j)56,40,148,132,678,59,476,56639325,65535,39321videntInstructions for uploading results to the Opasnet Base:
* Make sure that you have created an object page in the Opasnet wiki for each object you want to upload. (This applies also to assessments and runs!)
* Create a user-defined attribute Ident if it does not exist.
* Use the wiki identifier as the Ident for the object in Analytica.
* Use the wiki page name as the Title for the object.
* Make sure that you have defined the Units.
* If an object with the same Ident (Analytica identifier) already exists, metadata about that object will NOT be updated. However, the actual results will be uploaded normally.220,220,-1212,108Detailsktluser8. Decta 2008 3:01 48,2464,32,148,241,206,202,495,296,17ODBC write'Driver={MySQL ODBC 5.1 Driver};Server=10.66.10.102;Database=resultdb;User='&username&'; Password='&password&';Option=3'168,200,148,121,1,0,1,1,1,0,,0,2,102,90,495,3022,168,178,833,303,0,MIDM[]''168,152,048,121,1,1,1,1,1,0,0,0,0[Formnode Username1]52425,39321,65535''168,176,048,121,1,1,1,1,1,0,0,0,0[Formnode Password1]52425,39321,65535ODBCContains the parameters for the open database connectivity (ODBC).'Driver={MySQL ODBC 5.1 Driver};Server=10.66.10.102;Database=resultdb;User=result_reader; Password=ora4ever;Option=3'168,128,148,121,1,0,1,1,1,0,,0,2,102,90,476,224Dimindex i:= copyindex(D_i);
index j:= copyindex(D_j);
Dim1[d_i=i, d_j=j]400,160,148,131,1,0,1,1,1,0,0,0,02,89,98,476,2242,635,328,556,489,0,MIDM19661,54073,65535[D_i,D_j][Sys_localindex('J'),Sys_localindex('I')]Indindex i:= copyindex(I_i);
index j:= copyindex(I_j);
Ind1[I_i=i, I_j=j]400,184,148,131,1,0,1,1,1,0,0,0,02,380,47,476,2962,490,110,649,655,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]Locindex i:= copyindex(L_i);
index j:= copyindex(L_j);
Loc1[L_i=i, L_j=j]400,96,148,131,1,0,1,1,1,0,0,0,02,370,45,476,4452,43,42,1147,516,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]ObjThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.index i:= copyindex(O_i);
index j:= copyindex(O_j);
Obj2[O_i=i, O_j=j]400,48,148,131,1,0,1,1,1,0,0,0,02,378,21,493,5012,21,103,889,421,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]Standard versions400,112,-172,1001,0,0,1,0,1,0,,0,D_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]168,24,148,12[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]D_j['id','Ident','Name']168,48,148,12['id','Ident','Name']I_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]168,72,148,12[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]I_j['id','Iident','Iname','Did','Dident','Dname']168,96,148,12['id','Iident','Iname','Did','Dident','Dname']L_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466]56,120,148,12[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466]L_j['id','Obj_id_i','Location','Roww','Locn','Num','Description','id','Ident','Name','Unit','Typ_id','Page','Wik_id']56,144,148,12['id','Obj_id_i','Location','Roww','Locn','Num','Description','id','Ident','Name','Unit','Typ_id','Page','Wik_id']O_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115]56,24,148,13[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115]O_j['id','Ident','Name','Unit','Typ_id','Page','Wik_id']56,48,148,13['id','Ident','Name','Unit','Typ_id','Page','Wik_id']SettThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.index i:= copyindex(S_i);
index j:= copyindex(S_j);
Sett1[S_i=i, S_j=j]400,72,148,131,1,0,1,1,1,0,0,0,02,378,21,493,5012,227,134,319,515,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]ItemThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.index i:= copyindex(It_i);
index j:= copyindex(It_j);
Item1[it_i=i, it_j=j]400,120,148,131,1,0,1,1,1,0,0,0,02,378,21,493,5012,298,216,382,519,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]It_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]56,168,148,13[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]It_j['id','Sett_id','Obj_id','Fail']56,192,148,13['id','Sett_id','Obj_id','Fail']S_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]56,72,148,13[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]S_j['id','Obj_id','Sty_id']56,96,148,13['id','Obj_id','Sty_id']DimTable(D_i,D_j)(
43,'Vehicle_type','Vehicle type',
45,'Transport_mode','Transport mode',
46,'Cost_type','Cost type',
47,'Composite_fraction','Composite fraction',
51,'Food_source','The method for food production',
52,'Feed_pollutant','Decision about fish feed',
53,'Salmon_recomm','Decision about samon consumption recommendation',
32,'0','No dimension has been identified',
54,'Parameter','Statistical and other parameters of a variable',
42,'Environ_compartment','Environmental compartment',
41,'Emission_source','Emission source',
36,'Pollutant','Pollutant',
34,'Health_impact','Health impact',
33,'Decision','Possible range of decisions for a single decision-maker',
35,'Time','Time',
40,'Period','Period',
48,'Age','Age',
37,'Spatial_location','Spatial location',
38,'Length','Length',
49,'Municipality_fin','Municipalities in Finland',
44,'Person_or_group','Person or group',
39,'Non_health_impact','Non-health impact'
)280,160,148,131,1,1,1,1,1,0,0,0,02,89,98,476,2242,604,56,556,489,0,MIDM39325,65535,39321[D_i,D_j][D_j,D_i]IndTable(I_i,I_j)(
55,'Salmon_decision','',33,'Decision','Possible range of decisions for a single decision-maker',
80,'Reg_poll','',33,'Decision','Possible range of decisions for a single decision-maker',
81,'Recommendation1','',33,'Decision','Possible range of decisions for a single decision-maker',
83,'H1899','',33,'Decision','Possible range of decisions for a single decision-maker',
84,'H1898','',33,'Decision','Possible range of decisions for a single decision-maker',
56,'Hma_area','',37,'Spatial_location','Spatial location',
57,'Hma_region','',37,'Spatial_location','Spatial location',
58,'Hma_zone','',37,'Spatial_location','Spatial location',
88,'Condb_location1','',37,'Spatial_location','Spatial location',
93,'Op_en2672','',37,'Spatial_location','Spatial location',
59,'Year_1','',35,'Time','Time',
61,'Year_2','',35,'Time','Time',
82,'Year3','',35,'Time','Time',
60,'Op_en2665','Cause of death 1',34,'Health_impact','Health impact',
62,'Cause_of_death_2','',34,'Health_impact','Health impact',
85,'Cause_of_death3','',34,'Health_impact','Health impact',
63,'Length_1','',38,'Length','Length',
70,'Output_1','',39,'Non_health_impact','Non-health impact',
65,'Period_1','',40,'Period','Period',
86,'Run','',32,'0','No dimension has been identified',
71,'Vehicle_noch','',43,'Vehicle_type','Vehicle type',
92,'Vehicle_1','',43,'Vehicle_type','Vehicle type',
72,'Stakeholder_1','',44,'Person_or_group','Person or group',
73,'Mode1','',45,'Transport_mode','Transport mode',
74,'Cost_structure_1','',46,'Cost_type','Cost type',
75,'Comp_fr_1','',47,'Composite_fraction','Composite fraction',
76,'Age1','',48,'Age','Age',
77,'Municipality_fin1','',49,'Municipality_fin','Municipalities in Finland',
79,'Salmon1','',51,'Food_source','The method for food production',
78,'Pollutant1','',36,'Pollutant','Pollutant',
89,'Condb_agent1','',36,'Pollutant','Pollutant',
91,'Condb_agent2','',36,'Pollutant','Pollutant',
87,'Condb_compartment1','',42,'Environ_compartment','Environmental compartment',
90,'Condb_param1','',54,'Parameter','Statistical and other parameters of a variable'
)280,184,148,131,1,1,1,1,1,0,0,0,02,380,47,476,2962,232,242,874,303,0,MIDM2,12,22,876,493,0,MIDM39325,65535,39321[I_j,I_i][I_j,I_i]LocTable(L_i,L_j)(
1,1,'Business as usual',0,0,0,'',1,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
2,1,'Recommend restrictions to salmon consumption',0,0,0,'',2,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
3,1,'Stricter limits for fish feed pollutants',0,0,0,'',3,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
4,1,'Restrictions to salmon consumption AND stricter fish feed limits',0,0,0,'',4,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
26,2,'All causes',0,0,0,'',26,'Op_en2693','Testvariable','kg',1,2693,1,
197,6,'>= 5 km',0,0,0,'',197,'Ppmconc_bustraffic','PM2.5 concentration from bus traffic in Helsinki in 2020','ug/m3',1,0,0,
196,6,'< 5 km',0,0,0,'',196,'Ppmconc_bustraffic','PM2.5 concentration from bus traffic in Helsinki in 2020','ug/m3',1,0,0,
8,3,'2020',0,0,0,'',8,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
7,3,'1997',0,0,0,'',7,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
10,2,'Cardiopulmonary',0,0,0,'',10,'Op_en2693','Testvariable','kg',1,2693,1,
11,2,'Lung cancer',0,0,0,'',11,'Op_en2693','Testvariable','kg',1,2693,1,
12,2,'All others',0,0,0,'',12,'Op_en2693','Testvariable','kg',1,2693,1,
27,5,'Downtown',0,0,0,'',27,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
28,5,'Centre',0,0,0,'',28,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
29,5,'Suburb',0,0,0,'',29,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
30,5,'Länsi-Espoo',0,0,0,'',30,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
31,5,'Pohjois-Espoo',0,0,0,'',31,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
32,5,'Etelä-Espoo',0,0,0,'',32,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
33,5,'Keski-Espoo',0,0,0,'',33,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
34,5,'Länsi-Vantaa',0,0,0,'',34,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
35,5,'Keski-Vantaa',0,0,0,'',35,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
36,5,'Pohjois-Vantaa',0,0,0,'',36,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
37,5,'Itä-Vantaa',0,0,0,'',37,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
38,5,'Kanta-Helsinki',0,0,0,'',38,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
39,5,'Länsi-Helsinki',0,0,0,'',39,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
40,5,'Vanha-Helsinki',0,0,0,'',40,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
41,5,'Konalanseutu',0,0,0,'',41,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
42,5,'Pakilanseutu',0,0,0,'',42,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
43,5,'Malminseutu',0,0,0,'',43,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
44,5,'Itä-Helsinki',0,0,0,'',44,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
45,5,'1001',0,0,0,'',45,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
46,5,'1002',0,0,0,'',46,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
47,5,'1003',0,0,0,'',47,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
48,5,'1004',0,0,0,'',48,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
49,5,'1005',0,0,0,'',49,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
50,5,'1006',0,0,0,'',50,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
51,5,'1007',0,0,0,'',51,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
52,5,'1008',0,0,0,'',52,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
53,5,'1009',0,0,0,'',53,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
54,5,'1010',0,0,0,'',54,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
55,5,'1011',0,0,0,'',55,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
56,5,'1012',0,0,0,'',56,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
57,5,'1013',0,0,0,'',57,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
58,5,'1014',0,0,0,'',58,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
59,5,'1015',0,0,0,'',59,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
60,5,'1016',0,0,0,'',60,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
61,5,'1017',0,0,0,'',61,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
62,5,'1018',0,0,0,'',62,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
63,5,'1019',0,0,0,'',63,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
64,5,'1020',0,0,0,'',64,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
65,5,'1021',0,0,0,'',65,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
66,5,'1022',0,0,0,'',66,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
67,5,'1023',0,0,0,'',67,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
68,5,'1024',0,0,0,'',68,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
69,5,'1025',0,0,0,'',69,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
70,5,'1026',0,0,0,'',70,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
71,5,'1027',0,0,0,'',71,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
72,5,'1028',0,0,0,'',72,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
73,5,'1029',0,0,0,'',73,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
74,5,'1030',0,0,0,'',74,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
75,5,'1031',0,0,0,'',75,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
76,5,'1032',0,0,0,'',76,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
77,5,'1033',0,0,0,'',77,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
78,5,'1034',0,0,0,'',78,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
79,5,'1035',0,0,0,'',79,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
80,5,'1036',0,0,0,'',80,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
81,5,'1037',0,0,0,'',81,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
82,5,'1038',0,0,0,'',82,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
83,5,'1039',0,0,0,'',83,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
84,5,'1040',0,0,0,'',84,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
85,5,'1041',0,0,0,'',85,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
86,5,'1042',0,0,0,'',86,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
87,5,'1043',0,0,0,'',87,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
88,5,'1044',0,0,0,'',88,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
89,5,'1045',0,0,0,'',89,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
90,5,'1046',0,0,0,'',90,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
91,5,'1047',0,0,0,'',91,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
92,5,'1048',0,0,0,'',92,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
93,5,'1049',0,0,0,'',93,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
94,5,'1050',0,0,0,'',94,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
95,5,'1051',0,0,0,'',95,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
96,5,'1052',0,0,0,'',96,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
97,5,'1053',0,0,0,'',97,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
98,5,'1054',0,0,0,'',98,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
99,5,'1055',0,0,0,'',99,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
100,5,'1056',0,0,0,'',100,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
101,5,'1057',0,0,0,'',101,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
102,5,'1058',0,0,0,'',102,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
103,5,'1059',0,0,0,'',103,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
104,5,'1060',0,0,0,'',104,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
105,5,'1061',0,0,0,'',105,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
106,5,'1062',0,0,0,'',106,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
107,5,'1063',0,0,0,'',107,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
108,5,'1064',0,0,0,'',108,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
109,5,'1065',0,0,0,'',109,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
110,5,'1066',0,0,0,'',110,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
111,5,'1067',0,0,0,'',111,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
112,5,'1068',0,0,0,'',112,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
113,5,'1069',0,0,0,'',113,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
114,5,'1070',0,0,0,'',114,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
115,5,'1071',0,0,0,'',115,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
116,5,'1072',0,0,0,'',116,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
117,5,'1073',0,0,0,'',117,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
118,5,'1074',0,0,0,'',118,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
119,5,'1075',0,0,0,'',119,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
120,5,'1076',0,0,0,'',120,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
121,5,'1077',0,0,0,'',121,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
122,5,'1078',0,0,0,'',122,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
123,5,'1079',0,0,0,'',123,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
124,5,'1080',0,0,0,'',124,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
125,5,'1081',0,0,0,'',125,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
126,5,'1082',0,0,0,'',126,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
127,5,'1083',0,0,0,'',127,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
128,5,'1084',0,0,0,'',128,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
129,5,'1085',0,0,0,'',129,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
130,5,'1086',0,0,0,'',130,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
131,5,'1087',0,0,0,'',131,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
132,5,'1088',0,0,0,'',132,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
133,5,'1089',0,0,0,'',133,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
134,5,'1090',0,0,0,'',134,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
135,5,'1091',0,0,0,'',135,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
136,5,'1092',0,0,0,'',136,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
137,5,'1093',0,0,0,'',137,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
138,5,'1094',0,0,0,'',138,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
139,5,'1095',0,0,0,'',139,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
140,5,'1096',0,0,0,'',140,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
141,5,'1097',0,0,0,'',141,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
142,5,'1098',0,0,0,'',142,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
143,5,'1099',0,0,0,'',143,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
144,5,'1100',0,0,0,'',144,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
145,5,'1101',0,0,0,'',145,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
146,5,'1102',0,0,0,'',146,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
147,5,'1103',0,0,0,'',147,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
148,5,'1104',0,0,0,'',148,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
149,5,'1105',0,0,0,'',149,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
150,5,'1106',0,0,0,'',150,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
151,5,'1107',0,0,0,'',151,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
152,5,'1108',0,0,0,'',152,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
153,5,'1109',0,0,0,'',153,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
154,5,'1110',0,0,0,'',154,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
155,5,'1111',0,0,0,'',155,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
156,5,'1112',0,0,0,'',156,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
157,5,'1113',0,0,0,'',157,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
158,5,'1114',0,0,0,'',158,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
159,5,'1115',0,0,0,'',159,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
160,5,'1116',0,0,0,'',160,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
161,5,'1117',0,0,0,'',161,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
162,5,'1118',0,0,0,'',162,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
163,5,'1119',0,0,0,'',163,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
164,5,'1120',0,0,0,'',164,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
165,5,'1121',0,0,0,'',165,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
166,5,'1122',0,0,0,'',166,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
167,5,'1123',0,0,0,'',167,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
168,5,'1124',0,0,0,'',168,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
169,5,'1125',0,0,0,'',169,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
170,5,'1126',0,0,0,'',170,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
171,5,'1127',0,0,0,'',171,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
172,5,'1128',0,0,0,'',172,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
173,5,'1129',0,0,0,'',173,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
174,5,'1130',0,0,0,'',174,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
175,35,'2000',0,0,0,'',175,'Time','Time','s or date',2,2497,1,
176,3,'2001',0,0,0,'',176,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
177,3,'2002',0,0,0,'',177,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
178,3,'2003',0,0,0,'',178,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
179,3,'2004',0,0,0,'',179,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
180,3,'2005',0,0,0,'',180,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
181,3,'2006',0,0,0,'',181,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
182,3,'2007',0,0,0,'',182,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
183,3,'2008',0,0,0,'',183,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
184,3,'2009',0,0,0,'',184,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
185,3,'2010',0,0,0,'',185,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
186,3,'2011',0,0,0,'',186,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
187,3,'2012',0,0,0,'',187,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
188,3,'2013',0,0,0,'',188,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
189,3,'2014',0,0,0,'',189,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
190,3,'2015',0,0,0,'',190,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
191,3,'2016',0,0,0,'',191,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
192,3,'2017',0,0,0,'',192,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
193,3,'2018',0,0,0,'',193,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
194,3,'2019',0,0,0,'',194,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
418,1,'BAU3',0,0,0,'',418,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
198,8,' 6.00-20.00',0,0,0,'',198,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
199,8,'20.00-24.00',0,0,0,'',199,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
200,8,' 0.00- 6.00',0,0,0,'',200,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
364,7,'Trips',0,0,0,'',364,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
365,7,'Trips by vehicle',0,0,0,'',365,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
366,7,'Vehicle km',0,0,0,'',366,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
367,7,'Parking lot',0,0,0,'',367,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
368,7,'Link intensity',0,0,0,'',368,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
369,7,'Vehicles',0,0,0,'',369,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
370,7,'Waiting',0,0,0,'',370,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
371,11,'Bus no change',0,0,0,'',371,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
372,11,'Bus one change',0,0,0,'',372,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
373,11,'Cab no change',0,0,0,'',373,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
374,11,'Cab one change',0,0,0,'',374,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
375,11,'Cab non-full',0,0,0,'',375,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
376,11,'Car',0,0,0,'',376,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
377,11,'No-change',0,0,0,'',377,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
378,12,'Passenger',0,0,0,'',378,'Fig_5c_expanding','Societal costs at different levels of guarantee','e/day',1,0,0,
379,12,'Society',0,0,0,'',379,'Fig_5c_expanding','Societal costs at different levels of guarantee','e/day',1,0,0,
380,13,'Car',0,0,0,'',380,'Bw1','Human body weight in Harjavalta','kg',1,2475,1,
381,13,'Composite',0,0,0,'',381,'Bw1','Human body weight in Harjavalta','kg',1,2475,1,
382,14,'Vehicle',0,0,0,'',382,'Testvariable2','Another variable for testing','kg',1,0,0,
383,14,'Driver',0,0,0,'',383,'Testvariable2','Another variable for testing','kg',1,0,0,
384,14,'Driving',0,0,0,'',384,'Testvariable2','Another variable for testing','kg',1,0,0,
385,14,'Parking',0,0,0,'',385,'Testvariable2','Another variable for testing','kg',1,0,0,
386,14,'Parking land',0,0,0,'',386,'Testvariable2','Another variable for testing','kg',1,0,0,
387,14,'Emissions',0,0,0,'',387,'Testvariable2','Another variable for testing','kg',1,0,0,
388,14,'Time',0,0,0,'',388,'Testvariable2','Another variable for testing','kg',1,0,0,
389,14,'Accidents',0,0,0,'',389,'Testvariable2','Another variable for testing','kg',1,0,0,
390,14,'Ticket',0,0,0,'',390,'Testvariable2','Another variable for testing','kg',1,0,0,
391,15,'0',0,0,0,'',391,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
392,15,'0.02',0,0,0,'',392,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
393,15,'0.05',0,0,0,'',393,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
394,15,'0.1',0,0,0,'',394,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
395,15,'0.25',0,0,0,'',395,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
396,15,'0.4',0,0,0,'',396,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
397,15,'0.45',0,0,0,'',397,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
398,15,'0.5',0,0,0,'',398,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
399,15,'0.55',0,0,0,'',399,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
400,15,'0.65',0,0,0,'',400,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
401,15,'0.75',0,0,0,'',401,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
402,15,'0.9',0,0,0,'',402,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
403,15,'1',0,0,0,'',403,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
404,16,'18-65',0,0,0,'',404,'Op_en1900','Pollutant health risk due to the consumption of salmon','avoided cases/a',1,1900,1,
405,16,'3',0,0,0,'',405,'Op_en1900','Pollutant health risk due to the consumption of salmon','avoided cases/a',1,1900,1,
406,17,'Harjavalta',0,0,0,'',406,'Op_en1903','Persistent pollutant concentrations in salmon','µg/kg',1,1903,1,
407,36,'Dieldrin',0,0,0,'',407,'Pollutant','Pollutant','-',2,2493,1,
408,36,'Toxaphene',0,0,0,'',408,'Pollutant','Pollutant','-',2,2493,1,
409,36,'Dioxin',0,0,0,'',409,'Pollutant','Pollutant','-',2,2493,1,
410,36,'PCB',0,0,0,'',410,'Pollutant','Pollutant','-',2,2493,1,
411,42,'Farmed salmon',0,0,0,'',411,'Environ_compartment','Environmental compartment','-',2,2490,1,
412,42,'Wild salmon',0,0,0,'',412,'Environ_compartment','Environmental compartment','-',2,2490,1,
413,42,'Market salmon',0,0,0,'',413,'Environ_compartment','Environmental compartment','-',2,2490,1,
414,33,'BAU',0,0,0,'',414,'Decision','Possible range of decisions for a single decision-maker','-',2,2496,1,
415,33,'More actions',0,0,0,'',415,'Decision','Possible range of decisions for a single decision-maker','-',2,2496,1,
416,33,'BAU2',0,0,0,'',416,'Decision','Possible range of decisions for a single decision-maker','-',2,2496,1,
417,33,'Restrict farmed salmon use',0,0,0,'',417,'Decision','Possible range of decisions for a single decision-maker','-',2,2496,1,
419,1,'More actions',0,0,0,'',419,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
421,1,'Restrict farmed salmon use2',0,0,0,'',421,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
422,34,'Cardiovascular',0,0,0,'',422,'Health_impact','Health impact','',2,2495,1,
423,10,'Home indoor',0,0,0,'Abbreviation in the Concentration database: I',423,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
424,10,'(Home) outdoor',0,0,0,'Abbreviation in the Concentration database: O',424,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
425,10,'(Personal) Work',0,0,0,'Abbreviation in the Concentration database: W',425,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
426,10,'Personal',0,0,0,'Abbreviation in the Concentration database: P',426,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
427,10,'Drinking water',0,0,0,'Abbreviation in the Concentration database: DW',427,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
428,10,'Indoor dust',0,0,0,'Abbreviation in the Concentration database: ID',428,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
429,10,'Human',0,0,0,'Abbreviation in the Concentration database: H',429,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
430,10,'Soil',0,0,0,'Abbreviation in the Concentration database: S',430,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
431,10,'Beverage',0,0,0,'Abbreviation in the Concentration database: B',431,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
432,10,'Food',0,0,0,'Abbreviation in the Concentration database: F',432,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
433,10,'In-Vehicle',0,0,0,'Abbreviation in the Concentration database: IV',433,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
434,10,'School',0,0,0,'Abbreviation in the Concentration database: SC',434,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
435,5,'Athens',0,0,0,'Country: Greece. Abbreviation in the Concentration Database: A',435,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
436,5,'Antwerp',0,0,0,'Country: Belgium. Abbreviation in the Concentration Database: ANT',436,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
437,5,'Antioch-Pittsburg',0,0,0,'Country: USA. Abbreviation in the Concentration Database: AP',437,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
438,5,'Antioch-Pittsburg A-P',0,0,0,'Country: USA. Abbreviation in the Concentration Database: A-P',438,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
439,5,'Arizona',0,0,0,'Country: USA. Abbreviation in the Concentration Database: AZ',439,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
440,5,'Basel',0,0,0,'Country: Germany. Abbreviation in the Concentration Database: B',440,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
441,5,'Baltimore',0,0,0,'Country: USA. Abbreviation in the Concentration Database: BAL',441,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
442,5,'Bayonne',0,0,0,'Country: USA. Abbreviation in the Concentration Database: BAY',442,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
443,5,'Bayonne-Ellizabeth',0,0,0,'Country: USA. Abbreviation in the Concentration Database: BE',443,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
444,5,'Copenhagen',0,0,0,'Country: Denmark. Abbreviation in the Concentration Database: C',444,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
445,5,'California',0,0,0,'Country: USA. Abbreviation in the Concentration Database: CA',445,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
446,5,'Columbus',0,0,0,'Country: USA. Abbreviation in the Concentration Database: CO',446,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
447,5,'Daegu',0,0,0,'Country: South Korea. Abbreviation in the Concentration Database: D',447,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
448,5,'Devils Lake',0,0,0,'Country: USA. Abbreviation in the Concentration Database: DLA',448,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
449,5,'Dublin',0,0,0,'Country: Ireland. Abbreviation in the Concentration Database: DU',449,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
450,5,'Elizabeth',0,0,0,'Country: USA. Abbreviation in the Concentration Database: ELI',450,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
451,5,'EPA Region 5.',0,0,0,'Country: USA. Abbreviation in the Concentration Database: EPA5',451,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
452,5,'Flanders',0,0,0,'Country: Belgium. Abbreviation in the Concentration Database: FLA',452,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
453,5,'Florence',0,0,0,'Country: Italy. Abbreviation in the Concentration Database: FL',453,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
454,5,'Grenoble',0,0,0,'Country: France. Abbreviation in the Concentration Database: G',454,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
455,5,'Germany',0,0,0,'Country: Germany. Abbreviation in the Concentration Database: GE',455,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
456,5,'Genoa',0,0,0,'Country: Italy. Abbreviation in the Concentration Database: GEN',456,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
457,5,'Greensboro GNC',0,0,0,'Country: USA. Abbreviation in the Concentration Database: GNC',457,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
458,5,'Greensboro',0,0,0,'Country: USA. Abbreviation in the Concentration Database: GRB',458,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
460,5,'Helsinki',0,0,0,'Country: Finland. Abbreviation in the Concentration Database: H',460,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
461,5,'Hannover',0,0,0,'Country: Germany. Abbreviation in the Concentration Database: HA',461,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
462,5,'Ile de France',0,0,0,'Country: France. Abbreviation in the Concentration Database: IDF',462,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
463,5,'Los Angeles',0,0,0,'Country: USA. Abbreviation in the Concentration Database: LA',463,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
464,5,'Milan',0,0,0,'Country: Italy. Abbreviation in the Concentration Database: M',464,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
465,5,'Minneapolis',0,0,0,'Country: USA. Abbreviation in the Concentration Database: MP',465,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
466,5,'Minnesota',0,0,0,'Country: USA. Abbreviation in the Concentration Database: MS',466,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
467,5,'Murcia',0,0,0,'Country: Spain. Abbreviation in the Concentration Database: MU',467,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
468,5,'Mexico City',0,0,0,'Country: Mexico. Abbreviation in the Concentration Database: MXC',468,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
469,5,'Oxford',0,0,0,'Country: England. Abbreviation in the Concentration Database: O',469,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
470,5,'Prague',0,0,0,'Country: Czech. Abbreviation in the Concentration Database: P',470,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
471,5,'Padua',0,0,0,'Country: Italy. Abbreviation in the Concentration Database: PA',471,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
472,5,'Puebla',0,0,0,'Country: Mexico. Abbreviation in the Concentration Database: PB',472,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
473,5,'Rouen',0,0,0,'Country: France. Abbreviation in the Concentration Database: R',473,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
475,5,'Strasbourg',0,0,0,'Country: France. Abbreviation in the Concentration Database: STR',475,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
476,5,'Umbria region',0,0,0,'Country: Italy. Abbreviation in the Concentration Database: UMB',476,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
477,5,'United States',0,0,0,'Country: USA. Abbreviation in the Concentration Database: USA',477,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
478,5,'Valdez',0,0,0,'Country: USA. Abbreviation in the Concentration Database: VAL',478,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
479,5,'Woodland',0,0,0,'Country: USA. Abbreviation in the Concentration Database: WDL',479,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
480,4,'66-25-1',0,0,0,'hexanal',480,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
481,4,'71-36-3',0,0,0,'1-butanol',481,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
482,4,'71-43-2',0,0,0,'benzene',482,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
483,4,'78-83-1',0,0,0,'2-methyl-1-propanol',483,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
484,4,'79-00-5',0,0,0,'1,1,2-trichloroethane',484,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
485,4,'79-01-6',0,0,0,'trichloroethene',485,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
486,4,'80-56-8',0,0,0,'alfa-pinene',486,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
487,4,'91-20-3',0,0,0,'naphtalene',487,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
488,4,'95-47-6',0,0,0,'o-xylene',488,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
489,4,'95-63-6',0,0,0,'trimethylbenzenes',489,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
490,4,'100-41-4',0,0,0,'ethylbenzene',490,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
491,4,'100-42-5',0,0,0,'styrene',491,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
492,4,'100-52-7',0,0,0,'benzaldehyde',492,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
493,4,'103-65-1',0,0,0,'propylbenzene',493,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
494,4,'104-76-7',0,0,0,'2-ethylhexanol',494,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
495,4,'108-38-3',0,0,0,'m(&p)-xylene',495,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
496,4,'108-88-3',0,0,0,'toluene',496,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
497,4,'108-95-2',0,0,0,'phenol',497,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
498,4,'110-54-3',0,0,0,'hexane',498,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
499,4,'110-82-7',0,0,0,'cyclohexane',499,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
500,4,'111-76-2',0,0,0,'ethanol, 2-butoxy-',500,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
501,4,'111-84-2',0,0,0,'nonane',501,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
502,4,'111-87-5',0,0,0,'1-octanol',502,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
503,4,'124-13-0',0,0,0,'octanal',503,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
504,4,'124-18-5',0,0,0,'decane',504,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
505,4,'127-18-4',0,0,0,'tetrachloroethene',505,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
506,4,'138-86-3',0,0,0,'d-limonene',506,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
507,4,'872-50-4',0,0,0,'2-pyrrolidinone, 1-methyl-',507,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
508,4,'1120-21-4',0,0,0,'undecane',508,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
509,4,'13466-78-9',0,0,0,'3-caren',509,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
510,4,'TVOC',0,0,0,'Toluene based total VOC',510,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
511,4,'67-66-3',0,0,0,'chloroform',511,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
512,4,'106-46-7',0,0,0,'1,4-dichlorobenzene',512,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
514,4,'56-23-5',0,0,0,'carbon tetrachloride',514,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
515,4,'75-09-2',0,0,0,'methylene chloride',515,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
517,4,'127-91-3',0,0,0,'b-pinene',517,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
520,4,'142-82-5',0,0,0,'n-heptane',520,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
521,4,'111-65-9',0,0,0,'n-octane',521,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
525,4,'112-40-3',0,0,0,'n-dodecane',525,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
526,4,'629-50-5',0,0,0,'n-tridecane',526,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
527,4,'629-59-4',0,0,0,'n-tetradecane',527,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
528,4,'629-62-9',0,0,0,'n-pentadecane',528,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
529,4,'107-83-5',0,0,0,'2-methylpentane',529,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
530,4,'96-14-0',0,0,0,'3-methylpentane',530,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
531,4,'565-59-3',0,0,0,'2,3-dimethylpentane',531,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
532,4,'591-76-4',0,0,0,'2-methylhexane',532,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
533,4,'589-34-4',0,0,0,'3-methylhexane',533,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
534,4,'592-27-8',0,0,0,'2-methylheptane',534,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
535,4,'589-81-1',0,0,0,'3-methylheptane',535,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
536,4,'96-37-7',0,0,0,'methylcyclopentane',536,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
537,4,'108-87-2',0,0,0,'methylcyclohexane',537,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
538,4,'526-73-8',0,0,0,'1,2,3-trimethylbenzene',538,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
540,4,'108-67-8',0,0,0,'1,3,5 trimethylbenzene',540,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
541,4,'4994-16-5',0,0,0,'4-phenylcyclohexene',541,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
542,4,'1,1,1-trichloroethane',0,0,0,'1,1,1-trichloroethane',542,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
545,4,'141-78-6',0,0,0,'ethylacetate',545,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
546,4,'123-86-4',0,0,0,'n-butylacetate',546,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
547,4,'78-93-3',0,0,0,'methyl ethyl ketone',547,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
548,4,'106-35-4',0,0,0,'3-heptatone',548,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
549,4,'93-58-3',0,0,0,'methyl benzoate',549,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
552,4,'123-51-3',0,0,0,'iso-amyl alcohol<sup>a</sup>',552,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
554,4,'67-63-0',0,0,0,'2-propanol<sup>a</sup>',554,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
555,4,'1634-04-4',0,0,0,'t-butyl methylether',555,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
556,4,'7439-92-1',0,0,0,'lead',556,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
557,4,'7440-38-2',0,0,0,'arsenic',557,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
558,4,'7440-43-9',0,0,0,'cadmium',558,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
559,4,'7440-39-3',0,0,0,'barium',559,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
560,4,'7440-47-3',0,0,0,'chrome',560,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
561,4,'7440-50-8',0,0,0,'copper',561,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
562,4,'7439-96-5',0,0,0,'manganese',562,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
563,4,'7440-02-0',0,0,0,'nickel',563,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
564,4,'7782-49-2',0,0,0,'selenium',564,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
565,4,'7440-62-2',0,0,0,'vanadium',565,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
566,4,'7440-66-6',0,0,0,'zinc',566,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
567,4,'71-55-6',0,0,0,'1,1,1-trichloroethane',567,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
568,4,'7439-97-6',0,0,0,'mercury',568,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
570,4,'60-27-5',0,0,0,'creatinine',570,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
571,4,'7429-90-5',0,0,0,'aluminium',571,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
572,4,'7440-70-2',0,0,0,'calcium',572,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
573,4,'7439-95-4',0,0,0,'magnesium',573,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
574,4,'7723-14-0',0,0,0,'phosphorus',574,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
575,4,'7440-24-6',0,0,0,'strontium',575,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
576,4,'7439-89-6',0,0,0,'iron',576,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
577,4,'7440-09-7',0,0,0,'potassium',577,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
578,4,'7440-23-5',0,0,0,'sodium',578,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
579,4,'58-89-9',0,0,0,'lindane',579,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
580,4,'52645-53-1',0,0,0,'permenthrine',580,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
581,4,'107-13-1',0,0,0,'acrylonitrile',581,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
582,4,'79-06-1',0,0,0,'acrylamide',582,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
589,4,'611-14-3',0,0,0,'1-ethyl 2methyl benzene',589,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
592,4,'109-66-0',0,0,0,'n-pentane',592,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
593,4,'7785-26-4',0,0,0,'alpha-pinene',593,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
594,4,'5989-27-5',0,0,0,'d-limonene',594,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
596,4,'106-99-0',0,0,0,'butadiene',596,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
597,4,'74-84-0',0,0,0,'ethane',597,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
598,4,'74-85-1',0,0,0,'ethylene',598,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
599,4,'74-86-2',0,0,0,'acetylene',599,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
600,4,'107-06-2',0,0,0,'1,2-dichloroethane',600,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
601,4,'106-42-3',0,0,0,'p-xylene',601,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
603,4,'98-82-8',0,0,0,'isopropylbenzene',603,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
604,4,'110-86-1',0,0,0,'pyridine',604,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
606,4,'109-06-8',0,0,0,'2-picoline',606,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
608,4,'108-99-6',0,0,0,'3-picoline',608,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
609,4,'108-89-4',0,0,0,'4-picoline',609,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
610,4,'104-51-8',0,0,0,'n-butylbenzene',610,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
611,4,'536-78-7',0,0,0,'3-ethylpyridine',611,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
613,4,'25551-13-7',0,0,0,'trimethylbenzene',613,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
618,4,'1336-36-3',0,0,0,'PCBs',618,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
619,4,'3547-04-4',0,0,0,'DDE',619,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
620,4,'118-74-1',0,0,0,'HCB',620,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
621,4,'5315-79-7',0,0,0,'1-hydroxypyrene',621,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
623,4,'1330-20-7',0,0,0,'xylenes',623,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
624,4,'37210-16-5',0,0,0,'CO2',624,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
625,4,'630-08-0',0,0,0,'CO',625,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
626,4,'54-11-5',0,0,0,'nicotine',626,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
628,4,'3588-17-8',0,0,0,'trans,trans-Muconic acid',628,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
629,4,'50-32-8',0,0,0,'benzo(a)pyrene',629,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
631,4,'590-86-3',0,0,0,'isovaleraldehyde',631,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
632,4,'123-38-6',0,0,0,'propionaldehyde',632,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
633,4,'123-72-8',0,0,0,'n-butyraldehyde',633,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
634,4,'75-07-0',0,0,0,'acetaldehyde',634,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
636,4,'50-00-0',0,0,0,'formaldehyde',636,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
637,4,'110-62-3',0,0,0,'valeraldehyde',637,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
638,4,'4170-30-3',0,0,0,'crotonaldehyde',638,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
639,22,'n',0,0,0,'Number of observations',639,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
640,22,'n_lt_LOQ',0,0,0,'Number of observations below level of quantitation',640,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
641,22,'F0.10',0,0,0,'Fractile 0.1',641,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
642,22,'F0.50',0,0,0,'Fractile 0.5',642,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
643,22,'F0.90',0,0,0,'Fractile 0.9',643,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
644,22,'F0.95',0,0,0,'Fractile 0.95',644,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
645,22,'Mean',0,0,0,'Arithmetic mean',645,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
646,22,'GeoMean',0,0,0,'Geometric mean',646,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
647,5,'ang',0,0,0,'Anglian Water ',647,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
648,5,'bou',0,0,0,'Bristol Water ',648,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
649,5,'brw',0,0,0,'Bournemouth & West hants ',649,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
650,5,'caw',0,0,0,'Cambridge Water ',650,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
651,5,'cho',0,0,0,'Cholderton Water ',651,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
652,5,'dcc',0,0,0,'Dee Valley Water ',652,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
653,5,'eas',0,0,0,'Welsh Water ',653,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
654,5,'ess',0,0,0,'Essex and Suffolk Water ',654,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
655,5,'fol',0,0,0,'Folkestone & Dover Water ',655,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
656,5,'har',0,0,0,'Hartlepool Water ',656,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
657,5,'mik',0,0,0,'Mid Kent Water ',657,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
658,5,'nor',0,0,0,'Northumbrian Water ',658,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
659,5,'nww',0,0,0,'Portsmouth Water ',659,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
660,5,'por',0,0,0,'Sutton & East Surrey Water ',660,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
661,5,'sea',0,0,0,'South East Water ',661,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
662,5,'sev',0,0,0,'Southern Water ',662,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
663,5,'sos',0,0,0,'South Staffordshire Water ',663,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
664,5,'sou',0,0,0,'Severn Trent Water ',664,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
665,5,'sww',0,0,0,'South West Water ',665,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
666,5,'teh',0,0,0,'Tendring Hundred Water ',666,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
667,5,'tha',0,0,0,'Thames Water ',667,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
668,5,'thr',0,0,0,'Three Valleys Water ',668,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
669,5,'wes',0,0,0,'United Utilties (North West Water) ',669,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
670,5,'wrx',0,0,0,'Wessex Water ',670,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
671,5,'yor',0,0,0,'Yorkshire Water',671,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
672,25,'BAU',0,0,0,'0.00000000000000',672,'Op_en1898','Recommendation for consumption of farmed salmon','-',1,1898,1,
673,25,'Restrict farmed salmon use',0,0,0,'0.00000000000000',673,'Op_en1898','Recommendation for consumption of farmed salmon','-',1,1898,1,
674,26,'BAU',0,0,0,'0.00000000000000',674,'Op_en1899','Pollutant concentration limits for fish feed','-',1,1899,1,
675,26,'More actions',0,0,0,'0.00000000000000',675,'Op_en1899','Pollutant concentration limits for fish feed','-',1,1899,1,
676,130,'Dieldrin',0,0,0,'0.00000000000000',676,'Op_en2705','Pollutant','-',6,2705,1,
677,130,'Toxaphene',0,0,0,'0.00000000000000',677,'Op_en2705','Pollutant','-',6,2705,1,
678,130,'Dioxin',0,0,0,'0.00000000000000',678,'Op_en2705','Pollutant','-',6,2705,1,
679,130,'PCB',0,0,0,'0.00000000000000',679,'Op_en2705','Pollutant','-',6,2705,1,
680,131,'Farmed salmon',0,0,0,'0.00000000000000',680,'Op_en2706','Salmon type','-',6,2706,1,
681,131,'Wild salmon',0,0,0,'0.00000000000000',681,'Op_en2706','Salmon type','-',6,2706,1,
682,131,'Market salmon',0,0,0,'0.00000000000000',682,'Op_en2706','Salmon type','-',6,2706,1,
685,133,'Cardiovascular',0,0,0,'0.00000000000000',685,'Op_en2707','Cause of death3','ICD-10',6,2707,1,
688,135,'2000',0,0,0,'0.00000000000000',688,'Op_en2708','Year3','year',6,2708,1
)280,96,148,131,1,1,1,1,1,0,0,0,02,370,45,476,4452,518,523,725,303,0,MIDM2,404,34,750,516,0,MIDM39325,65535,39321[L_j,L_i][L_j,L_i]ObjThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(O_i,O_j)(
1,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
2,'Op_en2693','Testvariable','kg',1,2693,1,
3,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
4,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
5,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
6,'Ppmconc_bustraffic','PM2.5 concentration from bus traffic in Helsinki in 2020','ug/m3',1,0,0,
7,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
8,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
9,'Fig_3_cost_by_source','Cost by source','e/trip',1,0,0,
10,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
11,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
12,'Fig_5c_expanding','Societal costs at different levels of guarantee','e/day',1,0,0,
13,'Bw1','Human body weight in Harjavalta','kg',1,2475,1,
14,'Testvariable2','Another variable for testing','kg',1,0,0,
15,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
16,'Op_en1900','Pollutant health risk due to the consumption of salmon','avoided cases/a',1,1900,1,
17,'Op_en1903','Persistent pollutant concentrations in salmon','µg/kg',1,1903,1,
18,'Op_en1905','Exposure to persistent pollutants due to salmon in the population of the Western Europe','µg/kg/d',1,1905,1,
19,'Op_en1906','Dose-response function of persistent pollutants','(mg/kg/d)-1',1,1906,1,
20,'Op_en1907','Omega-3 content in salmon','g/g',1,1907,1,
21,'Op_en1908','Omega-3 intake due to salmon in the population of the Western Europe','g/d',1,1908,1,
22,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
23,'Op_en1911','Cardiovascular mortality in the Western Europe','cases/a',1,1911,1,
24,'Op_en1912','Cardiovascular effects of omega-3 in salmon in teh Western Europe','avoided cases/a',1,1912,1,
25,'Op_en1898','Recommendation for consumption of farmed salmon','-',1,1898,1,
26,'Op_en1899','Pollutant concentration limits for fish feed','-',1,1899,1,
27,'Op_en1902','Persistent pollutant concentrations in fish feed','fraction',1,1902,1,
28,'Op_en1904','Salmon intake in the population of the Western Europe','g/d',1,1904,1,
29,'Op_en1909','ERF of omega-3 fatty acids on cardiovascular effects','1/(g/d)',1,1909,1,
30,'Op_en2556','Personal exposures to volatile organic compounds in Germany','ug/m^3',1,2556,1,
31,'Op_en2406','Excess cases of iMetHb in England and Wales','number',1,2406,1,
33,'Decision','Possible range of decisions for a single decision-maker','-',2,2496,1,
34,'Health_impact','Health impact','',2,2495,1,
35,'Time','Time','s or date',2,2497,1,
36,'Pollutant','Pollutant','-',2,2493,1,
37,'Spatial_location','Spatial location',' km or °',2,2498,1,
38,'Length','Length','km',2,2498,1,
39,'Non_health_impact','Non-health impact','-',2,2500,1,
40,'Period','Period','s',2,2497,1,
41,'Emission_source','Emission source','-',2,2492,1,
42,'Environ_compartment','Environmental compartment','-',2,2490,1,
43,'Vehicle_type','Vehicle type','-',2,0,0,
44,'Person_or_group','Person or group','-',2,2499,1,
45,'Transport_mode','Transport mode','-',2,0,0,
46,'Cost_type','Cost type','-',2,0,0,
47,'Composite_fraction','Composite fraction','fraction',2,0,0,
48,'Age','Age','a',2,2497,1,
49,'Municipality_fin','Municipalities in Finland','-',2,2498,1,
51,'Food_source','The method for food production','-',2,0,0,
52,'Feed_pollutant','Decision about fish feed','-',2,0,0,
53,'Salmon_recomm','Decision about samon consumption recommendation','-',2,0,0,
32,'0','No dimension has been identified','-',2,0,0,
54,'Parameter','Statistical and other parameters of a variable','-',2,0,0,
55,'Salmon_decision','','',6,0,0,
56,'Hma_area','','',6,0,0,
57,'Hma_region','','',6,0,0,
58,'Hma_zone','','',6,0,0,
59,'Year_1','','',6,0,0,
60,'Op_en2665','Cause of death 1','ICD-10',6,2665,1,
61,'Year_2','','',6,0,0,
62,'Cause_of_death_2','','',6,0,0,
63,'Length_1','','',6,0,0,
70,'Output_1','','',6,0,0,
65,'Period_1','','',6,0,0,
86,'Run','','',6,0,0,
71,'Vehicle_noch','','',6,0,0,
72,'Stakeholder_1','','',6,0,0,
73,'Mode1','','',6,0,0,
74,'Cost_structure_1','','',6,0,0,
75,'Comp_fr_1','','',6,0,0,
76,'Age1','','',6,0,0,
77,'Municipality_fin1','','',6,0,0,
82,'Year3','','',6,0,0,
81,'Recommendation1','','',6,0,0,
80,'Reg_poll','','',6,0,0,
79,'Salmon1','','',6,0,0,
78,'Pollutant1','','',6,0,0,
83,'H1899','','',6,0,0,
84,'H1898','','',6,0,0,
85,'Cause_of_death3','','',6,0,0,
87,'Condb_compartment1','','',6,0,0,
88,'Condb_location1','','',6,0,0,
89,'Condb_agent1','','',6,0,0,
90,'Condb_param1','','',6,0,0,
91,'Condb_agent2','','',6,0,0,
92,'Vehicle_1','','',6,0,0,
93,'Op_en2672','','',6,0,0,
94,'94','Analytica','',9,0,0,
95,'95','Analytica 4.1.0.9','',9,0,0,
97,'97','Analytica 4.1.0.9, CompositeTraffic_1_0_6.ana v. 11:47, 1000 iterations','',9,0,0,
99,'99','Analytica 4.1.0.9, RDB connection.ANA, 100 iterations','',9,0,0,
100,'100','RDB connection.ANA v. 1.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
101,'101','RDB connection.ANA v. 2.9.2008. Test data only., Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
102,'102','RDB connection.ANA v. 3.9.2008 b. Test data only., Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
103,'103','Farmed salmon.ANA 10:36, 31 December 2007, RDB connection.ANA 13:58, 3 September 2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
104,'104','Farmed salmon.ANA 10:36, 31 December 2007, RDB connection.ANA 13:58, 3 September 2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
105,'105','Farmed salmon.ANA 10:36, 31 December 2007, RDB connection.ANA 13:58, 3 September 2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
106,'106','Farmed salmon.ANA 10:36, 31 December 2007, RDB connection.ANA 13:58, 3 September 2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 10','',9,0,0,
107,'107','Farmed salmon.ANA 8.9.2008, RDB connection.ANA 8.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 10','',9,0,0,
108,'108','Farmed salmon.ANA 8.9.2008, RDB connection.ANA 8.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
98,'98','Test','',9,0,0,
109,'109',' CompositeTraffic_1_0_6.ANA 16.9.2008, RDB connection.ANA 16.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 10','',9,0,0,
110,'110',' CompositeTraffic_1_0_6.ANA 16.9.2008, RDB connection.ANA 16.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
111,'111','RDB connection.ANA 16.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
112,'112','RDB connection.ANA 9.10.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
113,'113','RDB connection.ANA 9.10.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 10','',9,0,0,
114,'Op_en1896','Benefit-risk assessment on farmed salmon','',4,1896,1,
130,'Op_en2705','Pollutant','-',6,2705,1,
131,'Op_en2706','Salmon type','-',6,2706,1,
133,'Op_en2707','Cause of death3','ICD-10',6,2707,1,
135,'Op_en2708','Year3','year',6,2708,1,
137,'Op_en2694','Testrun 1: Analytica Enterprise, (Windows), Version: 40100, Samplesize: 10','',9,2694,1,
159,'Op_eni1896','Benefit-risk assessment of farmed salmon','',4,0,1,
160,'Op_eni2694','Testrun 1: Analytica Enterprise, (Windows), Version: 40100, Samplesize: 10','',9,0,1,
183,'Op_eni2695','Testrun 2: Analytica Enterprise, (Windows), Version: 40100, Samplesize: 1000','',9,0,1
)280,48,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,152,162,1057,343,0,MIDM2,573,21,700,421,0,MIDM39325,65535,39321[O_j,O_i][O_j,O_i]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]SettThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(S_i,S_j)(
1,33,1,
2,37,1,
5,35,1,
6,34,1,
9,38,1,
10,39,1,
11,40,1,
12,32,1,
13,43,1,
14,44,1,
15,45,1,
16,46,1,
17,47,1,
18,48,1,
19,49,1,
23,51,1,
24,36,1,
28,42,1,
31,54,1,
35,114,3,
38,137,9,
37,114,4,
39,159,3,
41,160,9,
44,183,9
)280,72,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM39325,65535,39321[S_j,S_i][S_i,S_j]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]ItemThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(It_i,It_j)(
1,1,55,0,
2,2,56,0,
3,2,57,0,
4,2,58,0,
5,5,59,0,
6,6,60,0,
7,5,61,0,
8,6,62,0,
9,9,63,0,
10,11,65,0,
11,10,70,0,
12,13,71,0,
13,14,72,0,
14,15,73,0,
15,16,74,0,
16,17,75,0,
17,18,76,0,
18,19,77,0,
19,24,78,0,
20,23,79,0,
21,1,80,0,
22,1,81,0,
23,5,82,0,
24,1,83,0,
25,1,84,0,
26,6,85,0,
27,12,86,0,
28,28,87,0,
29,2,88,0,
30,24,89,0,
31,31,90,0,
32,24,91,0,
33,13,92,0,
34,2,93,0,
35,35,28,0
)280,120,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM39325,65535,39321[It_j,It_i][It_i,It_j]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]AssessmentDO NOT REMOVE THIS NODE. It is needed for computing the Objects node.ktluser29. Decta 2008 21:51 48,24168,224,152,121,11,11,550,300,17